• Title/Summary/Keyword: Lab-On-a-Chip

Search Result 197, Processing Time 0.028 seconds

A STUDY ON THE DEVELOPMENT OF ONE-DIMENSIONAL GUI PROGRAM FOR MICROFLUIDIC-NETWORK DESIGN (마이크로 유동 네트워크 설계를 위한 1차원 GUI 프로그램 개발에 관한 연구)

  • Park, I.H.;Kang, S.;Suh, Y.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.86-92
    • /
    • 2009
  • Nowadays, the development of microfluidic chip [i.e. biochip, micro-total analysis system ($\mu$-TAS) and LOC (lab-on-a-chip)] becomes more active, and the microchannels to deliver fluid by pressure or electroosmotic forces tend to be more complex like electronic circuits or networks. For a simple network of channels, we may calculate the pressure and the flow rate easily by using suitable formula. However, for complex network it is not handy to obtain such information with that simple way. For this reason, Graphic User Interface (GUI) program which can rapidly give required information should be necessary for microchip designers. In this paper, we present a GUI program developed in our laboratory and the simple theoretical formula used in the program. We applied our program to simple case and could get results compared well with other numerical results. Further, we applied our program to several complex cases and obtained reasonable results.

A Novel Soft Switched Auxiliary Resonant Circuit of a PFC ZVT-PWM Boost Converter for an Integrated Multi-chips Power Module Fabrication (PFC ZVT-PWM 승압형 컨버터에서 통합형 멀티칩 전력 모듈 제조를 위한 개선된 소프트 스위치 보조 공진 회로)

  • Kim, Yong-Wook;Kim, Rae-Young;Soh, Jae-Hwan;Choi, Ki-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.458-465
    • /
    • 2013
  • This paper proposes a novel soft-switched auxiliary resonant circuit to provide a Zero-Voltage-Transition at turn-on for a conventional PWM boost converter in a PFC application. The proposed auxiliary circuit enables a main switch of the boost converter to turn on under a zero voltage switching condition and simultaneously achieves both soft-switched turn-on and turn-off. Moreover, for the purpose of an intelligent multi-chip power module fabrication, the proposed circuit is designed to satisfy several design constraints including space saving, low cost, and easy fabrication. As a result, the circuit is easily realized by a low rated MOSFET and a small inductor. Detail operation and the circuit waveform are theoretically explained and then simulation and experimental results are provided based on a 1.8 kW prototype PFC converter in order to verify the effectiveness of the proposed circuit.

An Integrated Sensor for Pressure, Temperature, and Relative Humidity Based on MEMS Technology

  • Won Jong-Hwa;Choa Sung-Hoon;Yulong Zhao
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.505-512
    • /
    • 2006
  • This paper presents an integrated multifunctional sensor based on MEMS technology, which can be used or embedded in mobile devices for environmental monitoring. An absolute pressure sensor, a temperature sensor and a humidity sensor are integrated in one silicon chip of which the size is $5mm\times5mm$. The pressure sensor uses a bulk-micromachined diaphragm structure with the piezoresistors. For temperature sensing, a silicon temperature sensor based on the spreading-resistance principle is designed and fabricated. The humidity sensor is a capacitive humidity sensor which has the polyimide film and interdigitated capacitance electrodes. The different piezoresistive orientation is used for the pressure and temperature sensor to avoid the interference between sensors. Each sensor shows good sensor characteristics except for the humidity sensor. However, the linearity and hysteresis of the humidity sensor can be improved by selecting the proper polymer materials and structures.

Single chip multi-function peripheral image processor with unified binarization architecture (통합된 이진화 구조를 가진 복합기용 1-Chip 영상처리 프로세서의 개발)

  • Park, Chang-Dae;Lee, Eul-Hwan;Kim, Jae-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.34-43
    • /
    • 1999
  • A high-speed image processor (HIP) is implemented for a high-speed multi-function peripheral. HIP has a binarization architecture with unified data path. It has the pixel-by-pixel pipelined processing to minimize size of the external memory. It performs pre-processing such as shading correction, automatic gain control (AGC), and gamma correction, and also drives external CCD or CIS modules. The pre-processed data can be enlarged or reduced. Various binarizatin algorithms can be processed in the unified archiecture. The embedded binarization algorithms are simple thresholding, high pass filtering, dithering, error diffusion, and thershold modulated error diffusion. These binarization algorithms are unified based on th threshold modulated error diffusion. The data path is designed to share the common functional block of the binarization algorithms. The complexity of the controls and the gate counts is greatly reduced with this novel architecture.

  • PDF

Development of micro-mold for New Injecton Molder to fabricate Micro-Nano system (Micro-Nano 시스템 제조를 위한 소형 차세대 사출기 개발과 이를 위한 Micro meld의 개발)

  • 황교일;류경주;김훈모
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.910-913
    • /
    • 2002
  • Recently, the sensor and actuator are developed with EAP(Electro Active Polymer). Common used of they is close at hand, the bio chip and Lab on a chip are researched. For developed bio and micro system, a researcher applies semiconductor fabrication or make it by his hand. But, this method takes long time and a tolerance is large So they are problem of common used. So In this paper we propose the new inject ion molder and micro mold. The micro mold is different from exist ing mold. In this paper, the fabration of micro mold is introduced to inject.

  • PDF

Microtechnology for Biotechnology and Medicine (생명공학과 의학을 위한 마이크로 기술)

  • Lee, Sang-Hoon
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Recent a few decades, the microtechnology has been progressed so rapidly and applied in diverse areas. Especially, this technology was focused on the field of biotechnology and medicine because of its size and simple fabrication process. In this paper, the current status of microtechnology is briefly introduced from the aspect of material, process and device and the application of this technology in biotechnology and medicine is also described. The microtechnology will be more broadly applied in future in the biotechnology and medicine area and the biomedical engineer should have continuous interests in this technology.

Fuzzy Logic Application to a Two-wheel Mobile Robot for Balancing Control Performance

  • Kim, Hyun-Wook;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.154-161
    • /
    • 2012
  • This article presents experimental studies of fuzzy logic application to control a two-wheel mobile robot(TWMR) system. The TWMR system is composed of two systems, an inverted pendulum system and a mobile robot system. Although linear controllers can stabilize the TWMR, fuzzy controllers are expected to have robustness to uncertainties so that the resulting performances are expected to be better. Nominal fuzzy rules are used to control balance and position of TWMR. Fuzzy logic is embedded on a DSP chip to control the TWMR. Balancing performances of the PID controller and the fuzzy controller under disturbances are compared through extensive experimental studies.

Low Power ADC Design for Mixed Signal Convolutional Neural Network Accelerator (혼성신호 컨볼루션 뉴럴 네트워크 가속기를 위한 저전력 ADC설계)

  • Lee, Jung Yeon;Asghar, Malik Summair;Arslan, Saad;Kim, HyungWon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1627-1634
    • /
    • 2021
  • This paper introduces a low-power compact ADC circuit for analog Convolutional filter for low-power neural network accelerator SOC. While convolutional neural network accelerators can speed up the learning and inference process, they have drawback of consuming excessive power and occupying large chip area due to large number of multiply-and-accumulate operators when implemented in complex digital circuits. To overcome these drawbacks, we implemented an analog convolutional filter that consists of an analog multiply-and-accumulate arithmetic circuit along with an ADC. This paper is focused on the design optimization of a low-power 8bit SAR ADC for the analog convolutional filter accelerator We demonstrate how to minimize the capacitor-array DAC, an important component of SAR ADC, which is three times smaller than the conventional circuit. The proposed ADC has been fabricated in CMOS 65nm process. It achieves an overall size of 1355.7㎛2, power consumption of 2.6㎼ at a frequency of 100MHz, SNDR of 44.19 dB, and ENOB of 7.04bit.

UV 레이저 마이크로 머시닝을 이용한 마이크로 채널 제작

  • 양성빈;장원석;김재구;신보성;전병희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.245-245
    • /
    • 2004
  • 최근 급속히 성장하는 제약산업 분야에서 신약개발, 약물 투여, 유전자 분석에 필요한 비용과 시간을 줄이기 위하여 랩온어칩(Lab-on-a-chip) 기술이 부상하고 있다. 이러한 랩온어칩에서는 원하는 소량의 시료를 정밀하게 이송시켜 혼합, 반응, 분리, 검출 등이 하나의 칩 위에서 일련의 과정으로 수행 가능하게 하여 고속, 고효율, 저비용의 자동화를 시킬 수 있는 장점이 있다. 즉, 이는 하나의 칩 위에 분석에 필요한 여러 가지 장치들을 마이크로 머시닝 기술로 초소형 집적화 시킨 마이크로 프로세서이다.(중략)

  • PDF