Due to COVID-19, the importance of non-face-to-face counseling is increasing as the face-to-face counseling method has progressed to non-face-to-face counseling. The advantage of non-face-to-face counseling is that it can be consulted online anytime, anywhere and is safe from COVID-19. However, it is difficult to understand the client's mind because it is difficult to communicate with non-verbal expressions. Therefore, it is important to recognize emotions by accurately analyzing text and voice in order to understand the client's mind well during non-face-to-face counseling. Therefore, in this paper, text data is vectorized using FastText after separating consonants, and voice data is vectorized by extracting features using Log Mel Spectrogram and MFCC respectively. We propose a multi-emotion recognition model that recognizes five emotions using vectorized data using an LSTM model. Multi-emotion recognition is calculated using RMSE. As a result of the experiment, the RMSE of the proposed model was 0.2174, which was the lowest error compared to the model using text and voice data, respectively.
본 논문에서는 특정 서비스군의 소비자 니즈를 신속히 파악하기 위하여 일기와 같은 자연언어 텍스트를 활용한 분류 모델을 개발한다. 목적에 맞는 감정상태군을 정의하여 필수적인 감정들로 통합한 후 주어진 데이터셋에서 해당 감정 컬럼을 추출하여 텍스트 형식을 통일한다. 파이썬의 Keras 라이브러리를 사용하여 임베딩 레이어, LSTM 레이어, 밀집 레이어 등으로 학습 네트워크를 구성한 후 추출된 텍스트로 학습한 결과는 15회의 이포크 수행으로 98%의 정확도에 도달한다.
This study is about a method of extracting a summary from a news article in consideration of the importance of each sentence constituting the article. We propose a method of calculating sentence importance by extracting the probabilities of topic sentence, similarity with article title and other sentences, and sentence position as characteristics that affect sentence importance. At this time, a hypothesis is established that the Topic Sentence will have a characteristic distinct from the general sentence, and a deep learning-based classification model is trained to obtain a topic sentence probability value for the input sentence. Also, using the pre-learned ELMo language model, the similarity between sentences is calculated based on the sentence vector value reflecting the context information and extracted as sentence characteristics. The topic sentence classification performance of the LSTM and BERT models was 93% accurate, 96.22% recall, and 89.5% precision, resulting in high analysis results. As a result of calculating the importance of each sentence by combining the extracted sentence characteristics, it was confirmed that the performance of extracting the topic sentence was improved by about 10% compared to the existing TextRank algorithm.
KIPS Transactions on Software and Data Engineering
/
v.6
no.4
/
pp.203-210
/
2017
In this paper, we propose an effective neural network model for image caption generation and model transfer. This model is a kind of multi-modal recurrent neural network models. It consists of five distinct layers: a convolution neural network layer for extracting visual information from images, an embedding layer for converting each word into a low dimensional feature, a recurrent neural network layer for learning caption sentence structure, and a multi-modal layer for combining visual and language information. In this model, the recurrent neural network layer is constructed by LSTM units, which are well known to be effective for learning and transferring sequence patterns. Moreover, this model has a unique structure in which the output of the convolution neural network layer is linked not only to the input of the initial state of the recurrent neural network layer but also to the input of the multimodal layer, in order to make use of visual information extracted from the image at each recurrent step for generating the corresponding textual caption. Through various comparative experiments using open data sets such as Flickr8k, Flickr30k, and MSCOCO, we demonstrated the proposed multimodal recurrent neural network model has high performance in terms of caption accuracy and model transfer effect.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.190-194
/
2019
개체명 인식이란 주어진 문서에서 개체명의 범위를 찾고 개체명을 분류하는 것이다. 최근 많은 연구는 신경망 모델을 이용하며 하나 이상의 단어로 구성된 개체명을 BIO 표기법으로 표현한다. BIO 표기법은 개체명이 시작되는 단어의 표지에 B(Beginning)-를 붙이고, 개체명에 포함된 그 외의 단어의 표지에는 I(Inside)-를 붙이며, 개체명과 개체명 사이의 모든 단어의 표지를 O로 간주하는 방법이다. BIO 표기법으로 표현된 말뭉치는 O 표지가 90% 이상을 차지하므로 O 표지에 대한 혼잡도가 높아지는 문제와 불균형 학습 문제가 발생된다. 본 논문에서는 BIO 표기법 대신에 BIT 표기법을 제안한다. BIT 표기법이란 BIO 표기법에서 O 표지를 T(Tag) 표지로 변환하는 방법이며 본 논문에서 T 표지는 품사 표지를 나타낸다. 실험을 통해서 BIT 표기법이 거의 모든 경우에 성능이 향상됨을 확인할 수 있었다.
Proceedings of the Korean Society of Computer Information Conference
/
2022.01a
/
pp.13-16
/
2022
LSTM과 같은 딥러닝 기법을 이용해 언어모델을 얻는 과정에서 일종의 부산물로 학습 대상인 말뭉치를 구성하는 어휘의 단어벡터를 얻을 수 있다. 단어벡터의 차원을 2차원으로 감소시킨 후 이를 평면에 도시하면 대상 문장/문서의 핵심 어휘 사이의 상대적인 거리와 각도 등을 직관적으로 확인할 수 있다. 본 연구에서는 기형도의 시(詩)을 중심으로 특정 작품을 선정한 후 시를 구성하는 핵심 어휘들의 차원 감소된 단어벡터를 2D 평면에 도시하여, 단어벡터를 얻기 위한 텍스트 전처리 방식에 따라 그 거리/각도가 달라지는 양상을 분석해 보았다. 어휘 사이의 거리에 의해 군집/분류의 결과가 달라질 수 있고, 각도에 의해 유사도/유추 연산의 결과가 달라질 수 있으므로, 평면상에서 핵심 어휘들의 상대적인 거리/각도의 직관적 확인을 통해 군집/분류작업과 유사도 추천/유추 등의 작업 결과의 양상 변화를 확인할 수 있었다. 이상의 결과를 통해, 영화 추천/리뷰나 문학작품과 같이 단어 하나하나의 배치에 따라 그 분위기와 정동이 달라지는 분야의 경우 텍스트 전처리에 따른 거리/각도 변화를 미리 직관적으로 확인한다면 분류/유사도 추천과 같은 작업을 좀 더 정밀하게 수행할 수 있을 것으로 판단된다.
KIPS Transactions on Software and Data Engineering
/
v.8
no.3
/
pp.115-122
/
2019
For Korean phoneme recognition, Hidden Markov-Gaussian Mixture model(HMM-GMM) or hybrid models which combine artificial neural network with HMM have been mainly used. However, current approach has limitations in that such models require force-aligned corpus training data that is manually annotated by experts. Recently, researchers used neural network based phoneme recognition model which combines recurrent neural network(RNN)-based structure with connectionist temporal classification(CTC) algorithm to overcome the problem of obtaining manually annotated training data. Yet, in terms of implementation, these RNN-based models have another difficulty in that the amount of data gets larger as the structure gets more sophisticated. This problem of large data size is particularly problematic in the Korean language, which lacks refined corpora. In this study, we introduce CTC algorithm that does not require force-alignment to create a Korean phoneme recognition model. Specifically, the phoneme recognition model is based on convolutional neural network(CNN) which requires relatively small amount of data and can be trained faster when compared to RNN based models. We present the results from two different experiments and a resulting best performing phoneme recognition model which distinguishes 49 Korean phonemes. The best performing phoneme recognition model combines CNN with 3hop Bidirectional LSTM with the final Phoneme Error Rate(PER) at 3.26. The PER is a considerable improvement compared to existing Korean phoneme recognition models that report PER ranging from 10 to 12.
Purpose This study aims to propose a deep learning-based fake review detection model by combining authors' linguistic features and semantic information of reviews. Design/methodology/approach This study used 358,071 review data of Yelp to develop fake review detection model. We employed linguistic inquiry and word count (LIWC) to extract 24 linguistic features of authors. Then we used deep learning architectures such as multilayer perceptron(MLP), long short-term memory(LSTM) and transformer to learn linguistic features and semantic features for fake review detection. Findings The results of our study show that detection models using both linguistic and semantic features outperformed other models using single type of features. In addition, this study confirmed that differences in linguistic features between fake reviewer and authentic reviewer are significant. That is, we found that linguistic features complement semantic information of reviews and further enhance predictive power of fake detection model.
Recognition of named entity such as proper nouns in conversation sentences is the most fundamental and important field of study for efficient conversational information prediction. The most important part of a task-oriented dialogue system is to recognize what attributes an object in a conversation has. The named entity recognition model carries out recognition of the named entity through the preprocessing, word embedding, and prediction steps for the dialogue sentence. This study aims at using user - defined dictionary in preprocessing stage and finding optimal parameters at word embedding stage for efficient dialogue information prediction. In order to test the designed object name recognition model, we selected the field of daily chemical products and constructed the named entity recognition model that can be applied in the task-oriented dialogue system in the related domain.
Proceedings of the Korean Society of Computer Information Conference
/
2024.01a
/
pp.55-58
/
2024
최근 각 기업의 AI 면접시스템 도입이 증가하고 있으며, AI 면접에 대한 실효성 논란 또한 많은 상황이다. 본 논문에서는 AI 면접 과정에서 지원자를 평가하는 방식을 시각, 음성, 자연어처리 3영역에서 구현함으로써, 면접 지원자를 다방면으로 분석 방법론의 적절성에 대해 평가하고자 한다. 첫째, 시각적 측면에서, 면접 지원자의 감정을 인식하기 위해, 합성곱 신경망(CNN) 기법을 활용해, 지원자 얼굴에서 6가지 감정을 인식했으며, 지원자가 카메라를 응시하고 있는지를 시계열로 도출하였다. 이를 통해 지원자가 면접에 임하는 태도와 특히 얼굴에서 드러나는 감정을 분석하는 데 주력했다. 둘째, 시각적 효과만으로 면접자의 태도를 파악하는 데 한계가 있기 때문에, 지원자 음성을 주파수로 환산해 특성을 추출하고, Bidirectional LSTM을 활용해 훈련해 지원자 음성에 따른 6가지 감정을 추출했다. 셋째, 지원자의 발언 내용과 관련해 맥락적 의미를 파악해 지원자의 상태를 파악하기 위해, 음성을 STT(Speech-to-Text) 기법을 이용하여 텍스트로 변환하고, 사용 단어의 빈도를 분석하여 지원자의 언어 습관을 파악했다. 이와 함께, 지원자의 발언 내용에 대한 감정 분석을 위해 KoBERT 모델을 적용했으며, 지원자의 성격, 태도, 직무에 대한 이해도를 파악하기 위해 객관적인 평가지표를 제작하여 적용했다. 논문의 분석 결과 AI 면접의 다면적 평가시스템의 적절성과 관련해, 시각화 부분에서는 상당 부분 정확도가 객관적으로 입증되었다고 판단된다. 음성에서 감정분석 분야는 면접자가 제한된 시간에 모든 유형의 감정을 드러내지 않고, 또 유사한 톤의 말이 진행되다 보니 특정 감정을 나타내는 주파수가 다소 집중되는 현상이 나타났다. 마지막으로 자연어처리 영역은 면접자의 발언에서 나오는 말투, 특정 단어의 빈도수를 넘어, 전체적인 맥락과 느낌을 이해할 수 있는 자연어처리 분석모델의 필요성이 더욱 커졌음을 판단했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.