• Title/Summary/Keyword: LS-DYNA 3D

Search Result 112, Processing Time 0.025 seconds

A Study on the Collision and Grounding of Ships using HYDROCODE LS/DYNA3D (HYDROCODE LS/DYNA3D를 이용한 선박의 충돌 및 좌초에 관한 연구)

  • 이상갑;정영구
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.1
    • /
    • pp.1-14
    • /
    • 1997
  • This paper describes a series of numerical simulations of colision between a 310, 000 DWT double hull VLCC (struck ship) and three 35, 000, 70, 000 and 105, 000 DWT tankers (striking ships) using LS/DYNA3D. Collisions are assumed to occur at the middle of the VLCC with the striking ships moving at right angle to the VLCC centerline. Striking ship speeds are varied to find a critical speed without failure of inner side shell, and the informations of collision force and absorption energy of each case are also reported. The validation of LS/DYNA3D in this study was made by comparing the result of numerical simulation of LS/DYNA3D with that of double hull tanker grounding experiment by the Carderock Division of Navla Surface Warfare Center (CDNSWC).

  • PDF

A Study on the Simulation of Grounding of Double Hull Tanker using LS/DYNA3D (LS/DYNA3D를 이용한 이중선체 유조선의 좌초에 관한 연구)

  • 이상갑
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.4 no.2
    • /
    • pp.1-12
    • /
    • 1998
  • This paper descirbes a series of numberical simulations of grounding accidents of four 40,000 DWT Conventional and Advanced Double Hull tanker bottom structures using LS/DYNA3D. The overall objective of this study is no understand the structural failure and energy absorbing mechanisms during grounding events for candidate double hull tanker bottom structures, which lead to the initiation of inner shell rupture and cause the kinetic energy dissipation to bring the ship to a stop. These nuberical simulations of the grounding events will contribute to future improvements in tanker safety at the design stage.

  • PDF

A Study on the Free Drop Impact Characteristics of Spent Nuclear Fuel Shipping Casks by LS-DYNA3D and ABAQUS/Explicit Code (LS-DYNA3D 및 ABAQUS/Explicit Code를 이용한 사용후 핵연료 운반용기의 자유낙하 충격특성연구)

  • Choi, Young-Jin;Kim, Seung-Joong;Kim, Yong-Jae;Lee, Jae-Hyung;Lee, Young-Shin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.43-49
    • /
    • 2005
  • The package used to transport radioactive materials, which is called by the shipping cask, must be safe under normal and hypothetical accident conditions. These requirements for the cask design must be verified through test or finite element analysis. Since the cost for FE analysis is less than the one for test, the verification by FE analysis is mainly used. But due to the complexity of mechanical behaviors, the results depend on how users apply the codes and can cause severe errors during analysis. In this paper, finite element analysis is carried out for the 9 meters free drop condition of the hypothetical accident conditions using LS-DYNA3D and ABAQUS/Explicit. We have investigated the analyzing technique lot the free drop impact test of the cask and investigated several vulnerable cases. The analyzed results were compared with each other. We have suggested a reliable and relatively simple analysis technique for the drop test of spent nuclear fuel casks.

Occupant Risk Analysis of Safety Roller Guardrail with Energy Absorption Capability (충격흡수 세이프티롤러 가드레일의 탑승자 위험도 해석)

  • Lee, Dong Woo;Woo, Kwang Sung;Chae, Jong Sool
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.65-73
    • /
    • 2013
  • PURPOSES: This paper presents the results of computer simulations of roadside safety barrier, called by safety roller guardrail, consisting of rotational roller, rotation control plate, post and subsidiary members. The rotation roller and rotation control plate are made by EVA(ethylene vinyl acetate), and PE(polyester), respectively. METHODS: The occupant risk analysis has been carried out under vehicle crash condition for high containment level of SB-4 for the purpose of local road. Simulations are performed with the finite element code LS/DYNA-3D. RESULTS: The numerical results obtained by LS/DYNA-3D software from the viewpoints of vehicle stability, vehicle trajectory, occupant risk, etc. CONCLUSIONS: It is noted that not only impact severity is drastically reduced but also vehicle trajectory is improved due to the characteristics of energy absorption and rotation pattern of EVA rollers connected by control plates.

Analysis of the Dynamic Behavior of Guardrail Posts in Sloping Ground using LS-DYNA (LS-DYNA를 이용한 비탈면에 설치된 가드레일 지주의 동적거동)

  • LEE, Dong Woo;Woo, Kwang Sung
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • PURPOSES : This paper presents a finite element model to accurately represent the soil-post interaction of single guardrail posts in sloping ground. In this study, the maximum lateral resistance of a guardrail post has been investigated under static and dynamic loadings, with respect given to several parameters including post shape, embedment depth, ground inclination, and embedment location of the steel post. METHODS : Because current analytical methods applied to horizontal ground, including Winkler's elastic spring model and the p-y curve method, cannot be directly applied to sloping ground, it is necessary to seek an alternative 3-D finite element model. For this purpose, a 3D FHWA soil model for road-base soils, as constructed using LS-DYNA, has been adopted to estimate the dynamic behavior of single guardrail posts using the pendulum drop test. RESULTS : For a laterally loaded guardrail post near slopes under static and dynamic loadings, the maximum lateral resistance of a guardrail post has been found to be reduced by approximately 12% and 13% relative to the static analysis and pendulum testing, respectively, due to the effects of ground inclination. CONCLUSIONS : It is expected that the proposed soil material model can be applied to guardrail systems installed near slopes.

Impact Analysis of Motorcycle Helmet (모터싸이클 헬멧의 충격 해석)

  • Thai, Huu-Tai;Kim, Seung-Eock
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.573-578
    • /
    • 2008
  • Finite element analysis of impact response of a motorcycle helmet is presented in this paper. The finite element LS-DYNA3D code is used to simulate the impact response of the helmet including of plastic shell, foam liner, and magnesium headform. Since the maximum accelerations at center of gravity of the headform obtained by numerical analysis and experiment agree well, the numerical simulation is proved to be valid.

  • PDF

Finite Element Analysis and Experiment Study of Motorcycle Helmet (모터 싸이클 헬멧의 유한 요소 해석 및 실험 연구)

  • Thai, Huu-Tai;Kim, Seung-Eock
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.451-456
    • /
    • 2007
  • A finite element analysis and experiment study of a motorcycle helmet are presented in this paper. The finite element LS-DYNA3D code is used to analyze the helmet. The test specimen, instruments, and setup procedures are described. Since the displacements and Von-Mises stresses obtained by numerical analysis and experiment agree well, the numerical simulation is proved to be valid.

  • PDF

Design of a Mandrel for Expansion of the Tube of the Heat Exchanger (열교환기 튜브확관을 위한 맨드렐 설계)

  • Kang, H.S.;Kim, D.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.430-434
    • /
    • 2004
  • Specifically designed mandrel is needed to expand tube of the heat exchanger with inner grooves. Configuration of the expanded tube depends upon the shape and feeding velocity of the mandrel. 3D simulation software LS-DYNA was used to obtain optimum design conditions of the mandrel. We show how configuration of the expanded tube varies with different design parameters such as the approaching angle, diameter , and the feeding velocity of the mandrel. Material property data for analysis were obtained through experiments with SHPB ( Split Hopkinson Pressure Bars ).

  • PDF

Improving Collision Energy Absorption In High Speed Train By Using Thin Walled Tubes

  • Salimi, Ehsan;Molatefi, Habib;Rezvani, MohammadAli;Shahsavari, Erfan
    • International Journal of Railway
    • /
    • v.6 no.3
    • /
    • pp.85-89
    • /
    • 2013
  • The purpose of this paper is investigating the effect and influence rates of utilizing thin walled energy absorption tubes for improving crashworthiness parameter by increasing energy absorption of the body in high speed railcars. In order to find this, a proper profile of available tubes is chosen and added to the structure of selected high speed train in Iranian railway network (Pardis Trainset) and then examined in the scenario of impact with other moving rolling stock. Because of the specific features of LS-DYNA 3D software at collision analysis, the dynamic simulation has been performed in LS-DYNA 3D. The results of the analysis clearly indicate the improvement of train crashworthiness as the energy absorption of structure increases more than 30 percent in comparison with the original body. This strategy delays and reduces the shock to the structure. The verification of the simulation is by using ECE R66 standard.

Explosion Modelling for Crack Propagation near Blast holes in Rock Plate (암석판재에서 발파공 부근 균열전파에 대한 폭원모델링)

  • Choi, Byung-Hee;Kang, Myoung-Soo;Ryu, Chang-Ha;Kim, Jae-Woong
    • Explosives and Blasting
    • /
    • v.33 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • Recently, as the demand for development and utilization of underground space is increasing worldwide, the blast damaged zone has become a major issue in constructing underground structures. In this study, numerical analyses were performed for modelling a small-scale blasting of rock plates using PFC3D and ANSYS LS-DYNA. In order to verify the analysis results, several test blasts were conducted. It is concluded from the study that the numerical modelling methods well simulate the crack propagation procedure near blast holes under given conditions.