• Title/Summary/Keyword: LRFD

Search Result 339, Processing Time 0.019 seconds

A Study on the Comparisom of Load-carrying Capacity by the rating Methods of Bridges (교량평가법에 의한 내하력 비교에 관한 연구)

  • Han, Sang Chul;Yang, Seung Ie
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.477-492
    • /
    • 2001
  • About half of bridges in United States are considered to be deficient and therefore are in need of repair or replacement. Half of these are functionally obsolete, and others do not have required strength For these bridges repairs and replacements are needed To avoid the high cost of rehabilitation the bridge rating must corectly report the present load-carrying capacity Rating engineers use Allowable Stress Design(ASD) Load Factor Design(LFD), and Load Resistance Factor Design(LRFD) to evaluate the bridge load carrying capacity In this paper the load rating methods are introduced and bridge load test data are collected. The reasons that make the difference between test results and analytical results are explained for each bridge load test And load rating methods are applied to real bridge. The rating factors from each method are compared.

  • PDF

Flexural Strength of Composite HSB Hybrid Girders in Positive Moment (HSB 강재 적용 강합성 복합단면 거더 정모멘트부의 휨저항강도)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.385-395
    • /
    • 2011
  • The flexural strength of composite HSB hybrid I-girders under positive moment is investigated by the moment-curvature analysis method to evaluate the applicability of the current AASHTO LRFD design specification to such girders. The hybrid girders are assumed to have the top flange and the web fabricated from HSB600 steel and the bottom flange made of HSB800 steel. More than 6,200-composite I-girder sections that satisfy the section proportion limits of AASHTOL RFD specifications are generatedby the random sampling technique to consider a statistically meaningful wide range of section properties. The flexural capacities of the sections are calculated by the nonlinear moment-curvature analysis in which the HSB600 and HSB800 steels are modeled as an elastoplastic, strain-hardening material and the concrete as CEB-FIP model. The effects of ductility ratio and compressive strength of concrete slab on the flexural strength of composite hybrid girders make of HSB steels are analyzed. Numerical results indicated that the current AASHTO-LRFD equation can be used to calculate the flexural strength of composite hybrid girders fabricated from HSB steel.

Evaluation of the Resistance Bias Factors to Develop LRFD for Gravel Compaction Piles (LRFD 설계를 위한 쇄석다짐말뚝공법의 저항편향계수 산정)

  • Han, Yong-Bae;Park, Joon-Mo;Jang, Yeon-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.2
    • /
    • pp.43-55
    • /
    • 2012
  • In this study, the resistance bias factors are calculated to determine the resistance factor of Gravel Compaction Piles which is one of the soft ground improvement methods. In order to calculate resistance bias factors for gravel compaction piles, two ultimate bearing capacities were analyzed. One is the ultimate bearing capacity in 2.54 cm settlement measured using data of the field loading test on 41 piles and the other is the ultimate bearing capacity calculated using the seven equations concerning bulging failure. The results of analysis show that the probability density function of the calculated ultimate bearing capacities has a lognormal distribution. Resistance bias factor and the coefficient of variation for Greenwood equation are 0.91 and 0.38, respectively, and for those of Hughes & Withers are 1.19 and 0.39. The two equations are suitable for calculating resistance factors for LRFD of soil improvement using gravel compaction piles.

3-D Frame Design Using Second-Order Plastic-Hinge Analysis Accounting for Lateral Torsional Buckling (횡비틀림좌굴을 고려하는 2차 소성힌지해석을 이용한 3차원 강뼈대 구조물 설케)

  • 김승억;박주수
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.117-126
    • /
    • 2002
  • In this paper, 3-D fame design using second-orders plastic-hinge analysis accounting for lateral torsional buckling is developed. This analysis accounts for material and geometric nonlinearities of the structural system and its component members. Moreover, the problem associated with conventional second-order plastic-hinge analyses, which do not consider the degradation of the flexural strength caused by lateral torsional buckling, is overcome. Efficient ways of assessing steel frame behavior including gradual yielding associated with residual stresses and flexure, second-order effect, and geometric imperfections are presented. In this study, a model consisting of the unbraced length and cross-section shape is used to account for lateral torsional buckling. The proposed analysis is verified by the comparison of the LRFD results. A case studs shows that lateral torsional buckling is a very crucial element to be considered in second-order plastic-hinge analysis. The proposed analysis is shown to be an efficient reliable tool ready to be implemented into design practice.

3-D Frame Analysis and Design Using Refined Plastic-Hinge Analysis Accounting for Local Buckling (국부좌굴을 고려하는 개선소성힌지해석을 이용한 3차원 강뼈대 구조물 해석 및 설계)

  • Kim, Seung Eock;Park, Joo Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • In this paper, 3-D frame design using refined plastic-hinge analysis accounting for local buckling is developed. This analysis accounts for material and geometric nonlinearities of the structural system and its component members. Moreover, the problem associated with conventional refined plastic-hinge analyses, which do not consider the degradation of the flexural strength caused by local buckling, is overcome. Efficient ways of assessing steel frame behavior including gradual yielding associated with residual stresses and flexure, second-order effect, and geometric imperfections are presented. In this study, a model consisting of the width-thickness ratio is used to account for local buckling. The proposed analysis is verified by the comparison of the LRFD results. A case study shows that local buckling is a very crucial element to be considered in second-order plastic-hinge analysis. The proposed analysis is shown to be an efficient, reliable tool ready to be implemented into design practice.

Advanced analysis and optimal design of space steel frames accounting for nonlinear behavior of connections (접합부의 비선형 거동을 고려한 공간 강뼈대 구조물의 고등해석과 최적설계)

  • Choi, Se Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.683-694
    • /
    • 2004
  • Advanced analysis and optimal design of semi-rigid space steel frames were presented. The advanced analysis can predict the combined nonlinear effects of connection, geometry, and material on the behavior and strength of semi-rigid frames. The Kishi-Chen power model was used to describe the nonlinear behavior of semi-rigid connections. Geometric nonlinearity was determined using stability functions. Material nonlinearity was determined using the Column Research Council (CRC) tangent modulus and the parabolic function. The direct search method proposed by Choi and Kim was used as optimization technique. One by one, the member with the largest unit value evaluated using the LRFD interaction equation were placed adjacent to a larger member selected from the database. The objective function was assumed to be the weight of steel frame, while the constraint functions were load-carrying capacities, deflections, inter-story drifts, and the ductility requirements. The member sizes determined using the proposed method were compared to those derived from the conventional LRFD method.

Response Modification Factors and No Collapse Design of Typical Bridges (응답수정계수와 일반교량의 붕괴방지설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.185-189
    • /
    • 2017
  • The purpose of earthquake resistant design for typical bridges is the 'No Collapse Design' allowing emergency vehicles just after earthquakes. The Roadway Bridge Design Code provides design provisions to carry out such 'No Collapse Design' with a ductile mechanism and response modification factors given for connections and substructure play key role in this procedure. In case of response modification factors for substructure, the Roadway Bridge Design Code provides values considering ductility and redundancy. On the other hand, 'AASHTO LRFD Bridge Design Specifications' provides values considering additionally an artificial factor according to the bridge importance categories divided into critical, essential and others. In this study, a typical bridge with steel bearing connections and reinforced concrete piers is selected and different response modification factors for substructure are applied with design conditions given in the Roadway Bridge Design Code. Based on the comparison study of the design results, supplementary measures are suggested required by applying different response modification factors for substructure.

Notional-Load Plastic-Hinge Method for Steel Structure Design (강구조 설계를 위한 가상하중 소성활절 해석)

  • 김승억;윤영묵
    • Computational Structural Engineering
    • /
    • v.9 no.2
    • /
    • pp.103-113
    • /
    • 1996
  • This paper presents practical notional-load plastic-hinge method for a two-dimensional steel structure design. The proposed method incorporates the refined plastic-hinge concept for spread of plasticity together with a practical notional-load approach. The proposed method can assess realistically both strength and behavior of a structural system and its individual members in a direct manner. As a result, the method can be used for design without tedious separate member capacity checks, including the calculation of K-factor. The strengths predicted by the proposed method are then compared with those predicted by the exact plastic-zone analysis as well as by the conventional LRFD procedure. A good agreement is generally observed. The displacement predictions are compared with the plastic-zone solutions. Analysis and design guidelines in using the proporsed method are given in detail. Analysis and design procedures are recommended. Member sizes determined by the proposed method are compared with those determined by the LRFD method. It is concluded that the procedures are suitable for adoption in practice.

  • PDF

A Study on Lateral-Torsional Buckling Strength Equation of Compact T-Beam Subjected to Pure Bending (균일모멘트를 받는 조밀단면 T형보의 횡-비틀림 좌굴강도 기준식에 관한 연구)

  • Park, Jong-Sup;Kim, Yong-Hee;Yi, Gyu-Sei
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.2038-2043
    • /
    • 2009
  • This study investigates elastic lateral-torsional buckling(LTB) of T-beams subjected to pure bending using finite element analysis(FEA). The results from the FEA are compared with those from the current American Institute of Steel Council(AISC) Load and Resistance Factor Design(LRFD) Specifications. The comparison indicates that AISC-LRFD provide unsafe values for T-beam subjected to pure bending. Therefore, a new design equation are presented using results from the FEA. The new equation could be easily used to calculate the elastic lateral-torsional buckling moment resistance of T-beam for beam design and to expand the new equation for developing LTB equations of T-beam subjected to general loading conditions such as a concentrated load, distributed load, or a seres of concentrated load.

Advanced analysis and optimal design of steel frames accounting for nonlinear behavior of connections (접합부의 비선형 거동을 고려한 강뼈대 구조물의 고등해석과 최적설계)

  • Choi, Se Hyu;Park, Moon Ho;Song, Jae Ho;Lim, Cheong Kweon
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.661-672
    • /
    • 2003
  • The advanced analysis and optimal design of semi-rigid frame were presented. Advanced analysis can predict the combined nonlinear effects of connection, geometry, and material on the behavior and strength of semi-rigid frames. The Kishi-Chen power model was used to describe the nonlinear behavior of semi-rigid connections. Geometric nonlinearity was determined using stability functions. On the other hand, material nonlinearity was determined using the Column Research Council (CRC) tangent modulus and parabolic function. The direct search method proposed by Choi and Kim was used as optimization technique. The member with the largest unit value evaluated using the LRFD interaction equation was replaced one by one with an adjacent larger member selected from the database. The objective function was assumed as the weight of steel frame, with the constraint functions accounting for load-carrying capacities, deflections. inter-story drifts, and ductility requirement. Member sizes determined by the proposed method were compared with those derived using the conventional LRFD method.