• Title/Summary/Keyword: LQR-design method

Search Result 76, Processing Time 0.024 seconds

Eigenstructure Assignment Methodology with LQR Characteristics and Application to an Automotive Active Suspension Control (LQR 특성을 갖는 고유구조 지정 제어기법 및 자동차 능동 현가장치 제어에의 응용)

  • 최재원;서영봉;유완석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.108-120
    • /
    • 1998
  • In this paper, a new control system design algorithm, which has the advantages of the existing LQR and eigenstrcture assignment methods, is proposed. The method of the transformation matrix via block controller is utilized to develop the scheme. Using the proposed algorithm, LQR weighting matrices q and R, which satisfy the desired closed-loop eigenvalues and eigenvectors, can be achieved using only simple matrix computations. The usefulness of the proposed scheme is verified by applying to a numerical example and an automotive active suspension control system design.

  • PDF

A Control of Balancing Robot (밸런싱 로봇 제어)

  • Min, Hyung-Gi;Kim, Ji-Hoon;Yoon, Ju-Han;Jeung, Eun-Tae;Kwon, Sung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1201-1207
    • /
    • 2010
  • This paper shows to stabilize a balancing robot. We derive the dynamics of a balancing robot and design its controller using LQR method. For stabilizing balancing robot, we introduce a method to detect an angle using inertial sensors. In this study, we use a complementary filter to fuse signals by frequency response of gyroscope and accelerometer in order to measure the inclined angle of balancing robot. The filter coefficients are obtained by least square to minimize error in angle-detecting filter design. And then, after we derive a dynamics of balancing robot using Lagrange method, we linearize that dynamics for using LQR method.

Nuclear Power Control System Design using Genetic Algorithm

  • Lee, Yoon-Joon;Cho, Kyung-Ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.380-385
    • /
    • 1996
  • The genetic algorithm(GA) is applied to the design of the nuclear power control system. The reactor control system model is described in the LQR configuration. The LQR system order is increased to make the tracking system. The key parameters of the design are weighting matrices, and these are usually determined through numerous simulations in the conventional design. To determine the more objective and optimal weightings, the improved GA is applied. The results show that the weightings determined by the GA yield the better system responses than those obtained by tile conventional design method.

  • PDF

An Optimal Controller Design for Gun Driving System of Combat Vehicles (기동전투차량의 포 구동장치 최적제어기 설계)

  • Kim, Ji-Young;Lee, Seok-Jae;Lyou, Joon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.62-65
    • /
    • 2004
  • An optimal robust controller design method for gun driving system is discussed in this paper. The parameters of the gun driving controller are tuned by using the LQR characteristics for the performance and robustness. Tuning method that optimize velocity error gives a significant improvement over the existing PID tuning methods. It is shown that the tuning result of real gun driving system which is regarded as rigidness model or stiffness model satisfy performance and robustness.

  • PDF

PID Controller Tuning Using LQR method - Time domain approach (LQR방법에 의한 PID제어기 동조 - 시간영역에서의 접근)

  • Yang, Ji-Hoon;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.3-6
    • /
    • 2001
  • This paper presents optimal robust PID controller design method for second order systems to satisfy the design specifications in time domain. The parameters of PID controller are determinated by the weighting factors Q and R of cost function. It is suggested that the selection of Q and R matrix can be determinated by its relationship with the natural frequency of ITAE criterion.

  • PDF

Design and Implementation of LG-Servo Controller for Rotational Inverted Pendulum System Using Optimization Method (최적화 기법에 의한 회전형 역진자 시스템의 LQ-Servo 제어기 설계 및 구현)

  • Lee, Kang-Min;Yang, Ji-Hoon;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.79-81
    • /
    • 2004
  • LQ-Servo controller inherits the stability-robustness from rational LQR structure and also, satisfies performance-robustness that is lacking in LQR structure by importing partial output feedback. In this paper, LQ-Servo controller is suggested for strengthening the performance-robustness. For this, Several executings are effectively performed by implementing to the rotational inverted pendulum system.

  • PDF

Design of Balancing Robot Controller using Optimal Control Method (최적제어 기법을 이용한 밸런싱 로봇 제어기의 설계)

  • Yeo, Hee-Joo;Park, Hun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.190-196
    • /
    • 2014
  • In this paper, we get state equations based on wheel's rotation, tilt and steering are independent each other in balancing robot. Accordingly, we propose two LQR controllers which are appropriate for rotation and steering control of a balancing robot. And its superiority and appropriateness are demonstrated by a comparison to a PID method. Simulation results verify the possibility of upright balancing, rectilinear motion and position control. Moreover, experimental results show that it guarantees the performance to apply the two LQR controllers to balance the robot.

Tuning of LQ-PID Controller-Time Domain Approach (LQ-PID 제어기 동조-시간영역에서의 접근)

  • Yang Ji Hoon;Suh Byung Suhl
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.1
    • /
    • pp.17-24
    • /
    • 2004
  • This paper proposes an optimal robust LQ-PID controller design method for the second order systems to satisfy the design specifications in time domain. The tuning parameters of LQ-PID controller are determinated by the relationships between the design parameters of the overshoot and the settling time which are design specifications in time domain, and the weighting factors Q and R in LQR. we can achieve the performance-robustness in time domain as well as the stability-robustness.

Attitude Control of Model Helicopter using the LQR Controller (최적 LQR 제어기를 이용한 모형 헬리콥터의 자세 제어)

  • Han, Hak-Sic;Jeong, Sang-Chul;Kim, Gwan-Hyung;An, Young-Joo;Lee, Hyung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2171-2175
    • /
    • 2002
  • Helicopter dynamics are plenty of nonlinearity. A complete mathematical model including propeller dynamics and fortes generated by the propellers is very difficult to obtain. So the method used to design to design a controller is a parameter estimation. Design controller based on variable structure system. This paper deals with LQR control technique to control efficiently, its elevation angle and azimuth one. The purpose of the experiment is to design a controller allows to use a desired elevation angle and azimuth ones. The system model has a helicopter model with 2-degree-of freedom. The simulation results were verified usefulness of controller.

  • PDF

LQ-PID Controller Tuning for the Second-Order System with Time-Delay (시간지연을 갖는 2차 시스템의 LQ-PID 제어기 동조)

  • 박택선;서병설
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • This paper presents an optimal robust LQ-PID controller design method for the second order system with time-delay to meet design specifications. By LQR formulation of the second order system with time-delay, the tuning parameters of PID controller are related by weighting factors Q and R of cost function. The selection of weighting factors Q and R are chosen to satisfy such the design specifications as overshoot and settling time.