• 제목/요약/키워드: LQG/LTR control

검색결과 95건 처리시간 0.028초

증기발생기 디지탈 수위조절 시스템의 LQG / LTR 동적 제어설계 (The LQG/LTR Dynamic Digital Control System Design for the Nuclear Steam Generator Water Level)

  • Lee, Yoon-Joon
    • Nuclear Engineering and Technology
    • /
    • 제27권5호
    • /
    • pp.730-742
    • /
    • 1995
  • 증기발생기의 급수 및 수위조절 시스템과 관련하여 전체 시스템을 급수 서보시스템과 궤환제어기로 나누어 설계하였다. 급수 시스템의 설계에는 최적제어이론을 사용하였으며 시스템의 강인성을 위하여 다시 LTR 기법을 이용하였다. 중기발생기의 제어특성은 열수력학적인 이유에 의하여 출력에 따라 계속적으로 변하게 되므로 궤환제어기가 이러한 변화를 동적으로 반영할 수 있도록 하였다. 모든 설계는 연속시스템에서 이루어졌으며 적절한 샘플링 주기를 선정하여 디지탈화 하였다. 이같은 시스템을 이용하여 출력증가 및 감소의 두 가지에 대해 검토한 결과, 출력의 증가시에는 제어상수를 고정시키는 것이 바람직하나 출력의 감소시에는 시스템의 안정을 위하여 제어상수가 출력에 따라 동적으로 변화해야함을 알 수 있었다.

  • PDF

수중운동체를 위한 QLQG/LTR 심도 제어시스템 설계 (QLQG/LTR Depth Control System Design for Underwater Vehicles)

  • 김종식;한성익
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.118-127
    • /
    • 1993
  • A nonlinear control design method called the QJQG/LTR method is presented for the depth control of underwater vehicles with the deadzone of the flow control valve. And, it is shown how the design plant model can be formulated in the QLQG/LTR depth control system design for underwater vehicles which have the triple integrator. In order to show the effectiveness of this control system, the linear LQG/LTR control system neglected the deadzone effect and the nonlinear QLQG/LTR control system considered it are compared. It is found that the QLQG/LTR control system is relatively insensitive to the input magnitude, even if there exists a hard nonlinearity in the plant.

  • PDF

비정방 비행 시스템에 대한 강인한 자동조종장치 설계 (Robust Autopilot Design for Nonsquare Flight Systems)

  • 김종식;정성훈
    • 대한기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.1123-1131
    • /
    • 1993
  • 본 논문에서는 비행체의 사이드슬립(sideslip)의 변화를 최소로 하면서 롤(roll) 및 요(yaw) 운동을 제어하는 것을 제어목표로 하여, 입출력 갯수가 같은 정방(square)시스템과 입출력 갯수가 다른 비정방(nonsquare)시스템에 대하여 LQG/LTR 및 비례 재어기를 각각 설계하여 그 성능을 비교분석한다.

Receding horizon LQG controller with FIR filter

  • Yoo, Kyung-Sang;Shim, Jae-Hoon;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.193-196
    • /
    • 1992
  • When there exist parameter uncertainty, modelling errors and nonminimum phase zeros in control object system. the stability robustness of conventional LQG and LOG/LTR methods are not satisfactory[2, 8]. Since these methods are performed on the infinite horizon, it is very hard to establish exact design parameters and thus they have lots of problems to be applied to real systems, So in this paper we propose RHLQG/FIRF optimal controller which has robust stability against parameter uncertainty, nonminimum phase zeros and modelling errors. This method uses only the information around at present and therefore shows good performance even when we do not know exact design parameters. We here compare LQG and LQG/LTR method with RHLQG/FIRF controller and exemplify that RHLQG/FIRF controller has better robust stability performance via simulations.

  • PDF

Design of the flexible switching controller for small PWR core power control with the multi-model

  • Zeng, Wenjie;Jiang, Qingfeng;Du, Shangmian;Hui, Tianyu;Liu, Yinuo;Li, Sha
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.851-859
    • /
    • 2021
  • Small PWR can be used for power generation and heating. Considering that small PWR has the characteristics of flexible operating conditions and complex operating environment, the controller designed based on single power level is difficult to achieve the ideal control of small PWR in the whole range of core power range. To solve this problem, a flexible switching controller based on fuzzy controller and LQG/LTR controller is designed. Firstly, a core fuzzy multi-model suitable for full power range is established. Then, T-S fuzzy rules are designed to realize the flexible switching between fuzzy controller and LQG/LTR controller. Finally, based on the core power feedback principle, the core flexible switching control system of small PWR is established and simulated. The results show that the flexible switching controller can effectively control the core power of small PWR and the control effect has the advantages of both fuzzy controller and LQG/LTR controller.

LQG/LTR 방법을 이용한 터렛 서보시스템의 강인한 제어기 설계 (A Design of Robust Controller for the Turret Servo System Using LQG/LTR Method)

  • 김종화;허남수;이만형
    • 한국정밀공학회지
    • /
    • 제6권2호
    • /
    • pp.88-97
    • /
    • 1989
  • In general turret servo system is subject to influnces by disturbances and uncertain modeling errors, which result from large dynamic characteristics and high-spedd operation. In this paper the influences of such disturbances and modeling errors are analyzed quali- tatively for the linerar approximation model of turret servo system, and then LQG/LTR control theory is applied to linear approximation model in order to design a controller which satisfies robustness/stability for the modeling errors. Finally the performance and robustness of designed controller for the given plant are verified through the simulation.

  • PDF

LQ/LTR 제어기법을 이용한 지진응답의 능동적 진동제어 (Active Control of Earthquake Responses using LQG/LTR Method)

  • 고현무
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.244-250
    • /
    • 1999
  • Active vibration control method for the reduction of vibration of structures have been developed. For the application of real structures active control system that has robustness must be designed because the mathematical model incompletely described has intrinsically modeling error. In this research we propose LQG/LTR method in designing control system with robustness. A combination of acceleration feedback and model-order reduction technique is used for the application of real structures and the computation efficiency. In case of such structures as the building and the tower the inter-story relative displacements represent an important constraint in seismic design. Therefore selection method of design parameters is also proposed in order to reduce the inter-story relative displacements.

  • PDF

The Experiment of the Robust Multi-Variable Controller and the LQG/LTR Controller for the Stewart Platform

  • Joon, Heo-Seong;Woo, Ko-Dong;Chul, Han-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.147.4-147
    • /
    • 2001
  • This work presents the robust controller and the LQG/LTR controller for the stewart platform. To simplify the dynamics we combine equation of the stewart platform and linearized one of hydraulic actuators not considered condensability of the fluid. Through the connection of two dynamic equations we can omit force feedback process of actuators and design controllers for the whole system. We applied two controllers on the stewart platform and show the adequacy controllers through the result of simulation and experiment.

  • PDF

조준경 안정화 시스템의 설계 및 특성분석 (Gunner primary sight stabilization system design and performance analysis)

  • 김용관;백운보;김종화;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.327-332
    • /
    • 1990
  • Gunner primary sight stabilization system is a fully integrated sensor package designed to provide the stabilized Line-of-Sight. In this study, to improve disturbance rejection capabilities, two types of compensator (LQG/LTR, Lead-Lag) were designed and then stabilization performances were compared under severe off-road environment. Simulation results shows that the stabilization performances using LQG/LTR methodology is better than Lead-Lag methodology in spite of dynamic uncertainties.

  • PDF

열간 압연 공정에서의 장력 제어시스템 (TENSION CONTROL SYSTEM FOR HOT STRIP MILLS)

  • 박성한;안병준;이만형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2267-2269
    • /
    • 2001
  • The looper control of hot strip finishing mill is one of the most important control item in hot strip rolling mill process. Loopers are placed between finishing mill stands and control the mass flow of the two stands. Another important action of the looper is to control the strip tension which influences on the width of the strip. So it is very important to control both the looper angle and the strip tension simultaneously but the looper angle and the strip tension are strongly interacted by each other. There are many control schemes such as conventional, non-interactive, LQ, LQG/LTR, and ILQ control in the looper control system. In this paper, we present the modeling for the looper of a hot strip finishing mill to control the tension of the strip and suggest the non-interactive(cross) and LQG/LTR control method.

  • PDF