• Title/Summary/Keyword: LPS-induced

Search Result 2,130, Processing Time 0.035 seconds

Role of Kupffer Cells in Vasoregulatory Gene Expression During Endotoxemia

  • Kim, Tae-Hoon;Lee, Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.306-311
    • /
    • 2008
  • Although hepatic microcirculatory dysfunction occurs during endotoxemia, the mechanism responsible for this remains unclear. Since Kupffer cells provide signals that regulate hepatic response in inflammation, this study was designed to investigate the role of Kupffer cells in the imbalance in the expression of vasoactive mediators. Endotoxemia was induced by intraperitoneal E. coli endotoxin (LPS, 1 mg/kg body weight). Kupffer cells were inactivated with gadolinium chloride ($GdCl_3$, 7.5 mg/kg body weight, intravenously) 2 days prior to LPS exposure. Liver samples were taken 6 h following LPS exposure for RT-PCR analysis of mRNA for genes of interest: endothelin (ET-1), its receptors $ET_A$ and $ET_B$, inducible nitric oxide synthase (iNOS), heme oxygenase (HO-1), and tumor necrosis factor-$\alpha$ (TNF-$\alpha$). mRNA levels for iNOS and TNF-$\alpha$ were significantly increased 31.8-fold and 26.7-fold in LPS-treated animals, respectively. This increase was markedly attenuated by $GdCl_3$, HO-1 expression significantly increased in LPS-treated animals, with no significant difference between saline and $GdCl_3$ groups. ET-1 was increased by LPS. mRNA levels for $ET_A$ receptor showed no change, whereas $ET_B$ transcripts increased in LPS-treated animals. The increase in $ET_B$ transcripts was potentiated by $GdCl_3$. We conclude that activation of Kupffer cells plays an important role in the imbalanced hepatic vasoregulatory gene expression induced by endotoxin.

The Involvement of Protein Tyrosine Kinase in the Bacterial Lipopolysaccharide-Induced Arachidonic Acid Metabolism in Rat Alveolar Macrophages

  • Kim, Ji-Young;Lee, Soo-Hwan;Lee, Ji-Young;Moon, Chang-Hyun;Lim, Jong-Seok;Moon, Chang-Kiu
    • Archives of Pharmacal Research
    • /
    • v.18 no.4
    • /
    • pp.262-266
    • /
    • 1995
  • Bacterial lipopolysaccharide (LPS) is one of the most potent inducers of various cytokines nad other proinflammatory mediators in macrophages. Although pathophysiological consequences of LPS-induced responses are well established, the mechanisms through which LPS-generated singals are transduced remain unclear. In the present study, we attempted to determine early intracellular events after LPS binding which transduced the signal for the induction of arachidonic acid metabolism in rat alveolar macrophages. While H-7, a protein kinase C(PKC) inhibitor, did not affect LPS-stimulated prostaglandin synthesis, staurosporine enhanced archidonic acid etabolism in macropahages treated with LPS. Phorbol-12-myristate-13 acetate snesitive to LPS compare with control group. PMA and H-7 did not alter the effect of flucose. Pertussis toxin did not show nay effect, thus pertussis toxin snesitive G-protein pathway appears not to play a role in this experimental system. Genistein and tyrphostin 25, protein tyrosine kinase 9PTK) inhibitors, markedly inhibited prostaglandin synthesis in macrophages nal transduction events leading to icnreased macrophage arachidonic acid metabolism.

  • PDF

Anti-inflammatory Effect of Houttuyniae Herba Water Extract on LPS-induced RAW 264.7 Mouse Macrophages (마우스 대식세포를 이용한 어성초(魚腥草) 물추출물의 항염효능연구)

  • Hwang, In Seung;Kim, Young Jin;Park, Yun Soo;Kim, Hyun Ju;Kim, Do Hoon;Park, Wan Su
    • The Korea Journal of Herbology
    • /
    • v.29 no.4
    • /
    • pp.83-89
    • /
    • 2014
  • Objectives : The purpose of this study was to investigate effects of Houttuyniae Herba water extract (HC) on calcium release and production of various inflammatory mediators such as nitric oxide (NO), interferon-inducible protein (IP)-10, platelet derived growth factor (PDGF)-BB, keratinocyte-derived chemokine (KC), vascular endothelial growth factor (VEGF), interleukin (IL)-4, and IL-5 in lipopolysaccharide (LPS)-induced RAW 264.7 mouse macrophages. Methods : NO production was measured by Griess reagent assay. Intracellular calcium level was measured with Fluo-4 assay. Levels of cytokines were measured by High-throughput multiplex bead array cytokine assay based on xMAP (multi-analyte profiling beads) technology. Results : HC significantly decreased NO production for 24 hrs incubation at the concentrations of 10, 25, 50, 100, and $200{\mu}/mL$ in LPS-induced RAW 264.7 (P < 0.05). HC significantly decreased production of IP-10, KC, VEGF, and PDGF-BB for 24 hrs incubation at the concentrations of 50, 100, and $200{\mu}/mL$ in LPS-induced RAW 264.7 (P < 0.05). HC also significantly decreased intracellular calcium release for 24 hrs incubation at the concentrations of 25, 50, 100, and $200{\mu}/mL$ in LPS-induced RAW 264.7 (P < 0.05). But HC did not show any significant effect on production of IL-4 and IL-5 in LPS-induced RAW 264.7. Conclusions : The results suggested that HC has anti-inflammatory property related with its inhibition on the production of NO, IP-10, KC, VEGF, and PDGF-BB in LPS-induced macrophages via calcium pathway.

Effects of GuBoEum Inhibiting NO, TNF-$\alpha$, IL-6 and IL-12 Production by Blocking MAP Kinase Activation in LPS-induced Murine Macrophages (LPS로 유도한 대식세포에서 MAP kinase의 억제에 의한 구보음(九寶飮)의 NO, TNF-$\alpha$, IL-6, IL-12 생성 억제 효과)

  • Lee, Byung-Soon;Shin, Jo-Young;Lee, Si-Hyeong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.104-112
    • /
    • 2009
  • The purpose of this study was to investigate the anti-inflammatory effects of extract from GuBoEum(GBE) on the peritoneal macrophage. To evaluate anti-inflammatory effects of GBE. I measured cytokines (interleukin-6; IL-6, interleukin-12; IL-12, tumor necrosis factor-$\alpha$; TNF-$\alpha$) and nitric oxide (NO) production in lipopolysacchride (LPS)-induced macrophages. Furthermore, I examined molecular mechanism using western blot and also LPS-induced endotoxin shock. Extract from GBE does not have any cytotoxic effect in the peritoneal macrophages. Extract from GBE reduced LPS-induced IL-6, TNF-$\alpha$, IL-12 and NO production in peritoneal macrophages. GBE inhibited the activation of extracelluar signal-regulated kinase (ERK), C-Jun $NH_2$-terminal kinase (JNK) but not of p38, degradation of $I{\kappa}B-{\alpha}$ in the LPS-stimulated peritoneal macrophages. GBE inhibited the production of TNF-$\alpha$, IL-6 and IL-12 in serum after LPS injection. These results suggest that GBE may inhibit the production of TNF-$\alpha$, IL-6, and IL-12 through inhibition of ERK and JNK activation, and that GBE may be beneficial oriental medicine for inflammatory diseases.

Bee Venom Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells

  • Jeong, Chang Hee;Cheng, Wei Nee;Bae, Hyojin;Lee, Kyung Woo;Han, Sang Mi;Petriello, Michael C.;Lee, Hong Gu;Seo, Han Geuk;Han, Sung Gu
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1827-1836
    • /
    • 2017
  • The world dairy industry has long been challenged by bovine mastitis, an inflammatory disease, which causes economic loss due to decreased milk production and quality. Attempts have been made to prevent or treat this disease with multiple approaches, primarily through increased abuse of antibiotics, but effective natural solutions remain elusive. Bee venom (BV) contains a variety of peptides (e.g., melittin) and shows multiple bioactivities, including prevention of inflammation. Thus, in the current study, it was hypothesized that BV can reduce inflammation in bovine mammary epithelial cells (MAC-T). To examine the hypothesis, cells were treated with LPS ($1{\mu}g/ml$) to induce an inflammatory response and the anti-inflammatory effects of BV (2.5 and $5{\mu}g/ml$) were investigated. The cellular mechanisms of BV against LPS-induced inflammation were also investigated. Results showed that BV can attenuate expression of an inflammatory protein, COX2, and pro-inflammatory cytokines such as IL-6 and TNF-${\alpha}$. Activation of NF-${\kappa}B$, an inflammatory transcription factor, was significantly downregulated by BV in cells treated with LPS, through dephosphorylation of ERK1/2. Moreover, pretreatment of cells with BV attenuated LPS-induced production of intracellular reactive oxygen species (e.g., superoxide anion). These results support our hypothesis that BV can decrease LPS-induced inflammatory responses in bovine mammary epithelial cells through inhibition of oxidative stress, NF-${\kappa}B$, ERK1/2, and COX-2 signaling.

Inhibitory Effect of Resveratrol on Lipopolysaccharide-induced p21 (WAF1/CIP1) and Bax Expression in Astroglioma C6 Cells (C6 신경교세포에서 lipopolysaccharide에 의한 p21 (WAF1/CIP1) 및 Bax의 발현증가에 미치는 resveratrol의 영향)

  • Kim, Young-Ae;Lim, Sun-Young;Rhee, Sook-Hee;Choi, Yung-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.124-129
    • /
    • 2005
  • Resveratrol, a phytoalexin found at high levels in grapes and in grape products such as red wine, has been reported to possess a wide range of biological and pharmacological activities including anti-oxident, anti-inflammatory, anti-mutagenic, and anti-carcinogenic effects, but its molecular mechanism is poorly understood. In this study, we examined the effects of resveratrol on lipopolysaccharide (LPS)-induced growth inhibitory activity and cell growth-regulatory gene products in astroglioma C6 cells to elucidate its possible mechanism for anti-cytotoxicity. It is shown that LPS induced time-dependent growth inhibition and morphological changes of C6 cells, which were recovered by pre-treatment with resveratrol. The anti-proliferative effect of LPS was associated with the induction of tumor suppressor p53 and cyclin-dependent kinase (Cdk) inhibitor p21 (WAF1/CIP1) expression assessed by RT-PCR and Western blot analysis in time-dependent manner in C6 cells. In addition, the pro-apoptotic Bax expression was also up-regulated in LPS-treated C6 cells without alteration of anti-apoptotic Bcl-2 and Bcl-XL expression. However, resveratrol significantly inhibited LPS-induced p53, p21 and Bax levels, suggesting that the modulation of p53, p21 and Bax levels could be one of the possible pathways by which resveratrol functions as anti-cytotoxic agent.

Anti-inflammatory Effect of Combination of Scutellariae Radix and Lonicerae Caulis Water Extract (황금, 인동등 추출물 혼합의 항염효능에 관한 in vitro 연구)

  • Hsia, Yu Chun;Choi, You Kyung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.330-336
    • /
    • 2014
  • This study aimed at examining the anti-inflammatory effects of Scutellariae Radix & Lonicerae Caulis water extract(SC). RAW 264.7 mouse macrophage cells were treated with $25{\sim}200{\mu}g/m{\ell}$ SC for 24 hours. Cell viability was then measured using MTT assays. The nitric oxide(NO) production and the creation of several cytokines in LPS-stimulated RAW 264.7 cells were investigated. SC inhibited significantly increasing the production of NO in LPS-induced RAW 264.7 cell at the density of 25, 50 and $200{\mu}g/m{\ell}$. SC inhibited significantly the TNF-${\alpha}$ of the RAW 264.7 cell induced by LPS at the density of $50{\mu}g/m{\ell}$. SC inhibited significantly the MIP-$1{\alpha}$ of the RAW 264.7 cell induced by LPS at the density of 25, 50 and $100{\mu}g/m{\ell}$. SC inhibited significantly the MIP-$1{\beta}$, MIP-2 at the density of 50, $100{\mu}g/m{\ell}$ in the RAW 264.7 cell increased by LPS, respectively. SC did not affect the production levels of VEGF in RAW 264.7 cell. As a result, SC significantly inhibited the inductions of MIP-$1{\alpha}$, MIP-$1{\beta}$, MIP-2 and NO in LPS-induced RAW 264.7 cell without causing the toxicity. These results signify that SC has anti-inflammatory effects on controlling the over inflammatory reaction on the RAW 264.7 cell.

3,4,5-Trihydroxycinnamic Acid Inhibits LPS-Induced iNOS Expression by Suppressing NF-${\kappa}B$ Activation in BV2 Microglial Cells

  • Lee, Jae-Won;Bae, Chang-Jun;Choi, Yong-Jun;Kim, Song-In;Kim, Nam-Ho;Lee, Hee-Jae;Kim, Sung-Soo;Kwon, Yong-Soo;Chun, Wan-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.2
    • /
    • pp.107-112
    • /
    • 2012
  • Although various derivatives of caffeic acid have been reported to possess a wide variety of biological activities such as neuronal protection against excitotoxicity and anti-inflammatory property, the biological activity of 3,4,5-trihydroxycinnamic acid (THC), a derivative of hydroxycinnamic acids, has not been clearly examined. The objective of the present study is to evaluate the anti-inflammatory effects of THC on lipopolysaccharide (LPS)-stimulated BV2 microglial cells. THC significantly suppressed LPS-induced excessive production of nitric oxide (NO) and expression of iNOS, which is responsible for the production of iNOS. THC also suppressed LPS-induced overproduction of pro-inflammatory cytokines such as IL-$1{\beta}$and TNF-${\alpha}$ in BV2 microgilal cells. Furthermore, THC significantly suppressed LPS-induced degradation of $I{\kappa}B$, which retains NF-${\kappa}B$ in the cytoplasm. Therefore, THC attenuated nuclear translocation of NF-${\kappa}B$, a major pro-inflammatory transcription factor. Taken together, the present study for the first time demonstrates that THC exhibits antiinflammatory activity through the suppression of NF-${\kappa}B$ transcriptional activation in LPS-stimulated BV2 microglial cells.

Rosmarinic Acid Down-Regulates the LPS-Induced Production of Monocyte Chemoattractant Protein-1 (MCP-1) and Macrophage Inflammatory Protein-1α (MIP-1α) via the MAPK Pathway in Bone-Marrow Derived Dendritic Cells

  • Kim, Hyung Keun;Lee, Jae Joon;Lee, Jun Sik;Park, Yeong-Min;Yoon, Taek Rim
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.583-589
    • /
    • 2008
  • In the present study, we investigated whether rosmarinic acid, which has been suggested to exhibit anti-inflammatory properties, can suppress the expressions of monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-$1{\alpha}$ ($MIP-1{\alpha}$) via the MAPK pathway in LPS-stimulated bone marrow-derived dendritic cells (BMDCs) in the presence of GM-CSF and IL-4 in media. The effects of rosmarinic acid were investigated in BMDCs with respect to the following; cytotoxicity, surface molecule expression, dextran-FITC uptake, cell migration, chemokine gene expression, and the MAPK signaling pathway. Rosmarinic acid was found to significantly inhibit the expressions of CD80, CD86, MHC class I, and MHC class II in LPS-stimulated mature BMDCs, and rosmarinic acid-treated BMDCs were found to be highly efficient with regards to antigen capture via mannose receptor-mediated endocytosis. In addition, rosmarinic acid reduced cell migration by inducing the expression of a specific chemokine receptor on LPS-induced mature BMDCs. Rosmarinic acid also significantly reduced the expressions of MCP-1 and $MIP-1{\alpha}$ induced by LPS in BMDCs and inhibited LPS-induced activation of MAPK and the nuclear translocation of $NF-{\kappa}B$. These findings broaden current perspectives concerning our understanding of the immunopharmacological functions of rosmarinic acid, and have ramifications that concern the development of therapeutic drugs for the treatment of DC-related acute and chronic diseases.

Lipoteichoic Acid Isolated from Lactobacillus plantarum Maintains Inflammatory Homeostasis through Regulation of Th1- and Th2- Induced Cytokines

  • Ahn, Ji Eun;Kim, Hangeun;Chung, Dae Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.151-159
    • /
    • 2019
  • Lipoteichoic acid isolated from Lactobacillus plantarum K8 (pLTA) alleviates lipopolysaccharide (LPS)-induced excessive inflammation through inhibition of $TNF-{\alpha}$ and interleukin (IL)-6. In addition, pLTA increases the survival rate of mice in a septic shock model. In the current study, we have found that pLTA contributes to homeostasis through regulation of pro- and anti-inflammatory cytokine production. In detail, pLTA decreased the production of IL-10 by phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells stimulated with prostaglandin E2 (PGE-2) and LPS. However, $TNF-{\alpha}$ production which was inhibited by PGE-2+LPS increased by pLTA treatment. The regulatory effects of IL-10 and $TNF-{\alpha}$ induced by PGE-2 and LPS in PMA-differentiated THP-1 cells were mediated by pLTA, but not by other LTAs isolated from either Staphylococcus aureus (aLTA) or L. sakei (sLTA). Further studies revealed that pLTA-mediated IL-10 inhibition and $TNF-{\alpha}$ induction in PGE-2+LPS-stimulated PMA-differentiated THP-1 cells were mediated by dephosphorylation of p38 and phosphorylation of c-Jun N-terminal kinase (JNK), respectively. Reduction of pLTA-mediated IL-10 inhibited the metastasis of breast cancer cells (MDA-MB-231), which was induced by IL-10 or conditioned media prepared from PGE-2+LPS-stimulated PMA-differentiated THP-1 cells. Taken together, our data suggest that pLTA contributes to inflammatory homeostasis through induction of repressed pro-inflammatory cytokines as well as inhibition of excessive anti-inflammatory cytokines.