DOI QR코드

DOI QR Code

Role of Kupffer Cells in Vasoregulatory Gene Expression During Endotoxemia

  • Published : 2008.12.31

Abstract

Although hepatic microcirculatory dysfunction occurs during endotoxemia, the mechanism responsible for this remains unclear. Since Kupffer cells provide signals that regulate hepatic response in inflammation, this study was designed to investigate the role of Kupffer cells in the imbalance in the expression of vasoactive mediators. Endotoxemia was induced by intraperitoneal E. coli endotoxin (LPS, 1 mg/kg body weight). Kupffer cells were inactivated with gadolinium chloride ($GdCl_3$, 7.5 mg/kg body weight, intravenously) 2 days prior to LPS exposure. Liver samples were taken 6 h following LPS exposure for RT-PCR analysis of mRNA for genes of interest: endothelin (ET-1), its receptors $ET_A$ and $ET_B$, inducible nitric oxide synthase (iNOS), heme oxygenase (HO-1), and tumor necrosis factor-$\alpha$ (TNF-$\alpha$). mRNA levels for iNOS and TNF-$\alpha$ were significantly increased 31.8-fold and 26.7-fold in LPS-treated animals, respectively. This increase was markedly attenuated by $GdCl_3$, HO-1 expression significantly increased in LPS-treated animals, with no significant difference between saline and $GdCl_3$ groups. ET-1 was increased by LPS. mRNA levels for $ET_A$ receptor showed no change, whereas $ET_B$ transcripts increased in LPS-treated animals. The increase in $ET_B$ transcripts was potentiated by $GdCl_3$. We conclude that activation of Kupffer cells plays an important role in the imbalanced hepatic vasoregulatory gene expression induced by endotoxin.

Keywords

References

  1. Bauer, I., Wanner, G. A., Rensing, H., Alte, C., Miescher, E. A., Wolf, B., Pannen, B. H., Clemens, M. G. and Bauer, M. (1998). Expression pattern of heme oxygenase isoenzymes 1 and 2 in normal and stress-exposed rat liver. Hepatology 27, 829-838 https://doi.org/10.1002/hep.510270327
  2. Bauer, M., Pannen, B. H., Bauer, I., Herzog, C., Wanner, G. A., Hanselmann, R., Zhang, J. X., Clemens, M. G. and Larsen, R. (1996). Evidence for a functional link between stress response and vascular control in hepatic portal circulation. J. Physiol. 271, G929-935
  3. Bauer, M., Zhang, J. X., Bauer, I. and Clemens, M. G. (1994). Endothelin-1 as a regulator of hepatic microcirculation: sublobular distribution of effects and impact on hepatocellular secretory function. Shock 1, 457-465 https://doi.org/10.1097/00024382-199406000-00011
  4. Baveja, R., Kresge, N., Ashburn, J. H., Keller, S., Yokoyama, Y., Sonin, N., Zhang, J. X., Huynh, T. and Clemens, M. G. (2002). Potentiated hepatic microcirculatory response to endothelin-1 during polymicrobial sepsis. Shock 18, 415-422 https://doi.org/10.1097/00024382-200211000-00005
  5. Bradham, C. A., Stachlewitz, R. F., Gao, W., Qian, T., Jayadev, S., Jenkins, G., Hannun, Y., Lemasters, J. J., Thurman, R. G. and Brenner, D. A. (1997). Reperfusion after liver transplantation in rats differentially activates the mitogen-activated protein kinases. Hepatology 25, 1128-1135 https://doi.org/10.1002/hep.510250514
  6. Brown, A. P., Harkema, J. R., Schultze, A. E., Roth, R. A. and Ganey, P. E. (1997). Gadolinium chloride pretreatment protects against hepatic injury but predisposes the lungs to alveolitis after lipopolysaccharide administration. Shock 7, 186-192 https://doi.org/10.1097/00024382-199703000-00006
  7. Calvo, M., Tebar, F., Lopez-Iglesias, C. and Enrich, C. (2001). Morphologic and functional characterization of caveolae in rat liver hepatocytes. Hepatology 33, 1259-1269 https://doi.org/10.1053/jhep.2001.23937
  8. Chun, K., Zhang, J., Biewer, J., Ferguson, D. and Clemens, M. G. (1994). Microcirculatory failure determines lethal hepatocyte injury in ischemic/reperfused rat livers. Shock 1, 3-9 https://doi.org/10.1097/00024382-199401000-00002
  9. Clemens, M. G., Bauer, M., Gingalewski, C., Miescher, E. and Zhang, J. (1994). Hepatic intercellular communication in shock and inflammation. Shock 2, 1-9 https://doi.org/10.1097/00024382-199407000-00001
  10. Clemens, M. G., Bauer, M., Pannen, B. H., Bauer, I. and Zhang, J. X. (1997). Remodeling of hepatic microvascular responsiveness after ischemia/reperfusion. Shock 8, 80-85 https://doi.org/10.1097/00024382-199708000-00002
  11. Fleming, I., Julou-Schaeffer, G., Gray, G. A., Parratt, J. R. and Stoclet, J. C. (1991). Evidence that an L-arginine/nitric oxide dependent elevation of tissue cyclic GMP content is involved in depression of vascular reactivity by endotoxin. Br. J. Pharmacol. 103, 1047-1052 https://doi.org/10.1111/j.1476-5381.1991.tb12298.x
  12. Goda, N., Suzuki, K., Naito, M., Takeoka, S., Tsuchida, E., Ishimura, Y., Tamatani, T. and Suematsu, M. (1998). Distribution of heme oxygenase isoforms in rat liver. Topographic basis for carbon monoxide-mediated microvascular relaxation. J. Clin. Invest. 101, 604-612 https://doi.org/10.1172/JCI1324
  13. Hardonk, M. J., Dijkhuis, F. W. J and Hulstaert, J. (1992). Heterogeneity of rat liver and spleen macrophages in gadolinium chloride-induced elimination and repopulation. J. Leukoc. Biol. 52, 296-302 https://doi.org/10.1002/jlb.52.3.296
  14. Hawker, F. (1991). Liver dysfunction in critical illness, Anaesth. Intensive Care 19, 165-181
  15. Higuchi, H. and Satoh, T. (1997). Endothelin-1 induces vasoconstriction and nitric oxide release via endothelin ET(B) receptors in isolated perfused rat liver. Eur. J. Pharmacol. 328, 175-182 https://doi.org/10.1016/S0014-2999(97)83043-9
  16. Huynh, T., Lemasters, J. J., Bracey, L. W. and Baker, C. C. (2000). Proinflammatory kupffer cell alterations after femur fracture trauma and sepsis in rats. Shock 14, 555-560 https://doi.org/10.1097/00024382-200014050-00010
  17. Kamoun, W. S., Karaa, A., Kresge, N., Merkel, S. M., Korneszczuk, K. and Clemens, M. G. (2006). LPS inhibited endothelin-1-induced endothelial NOS activation in hepatic sinusoidal cells through a negative feedback involving caveolin-1. Hepatology 43, 182-190 https://doi.org/10.1002/hep.20940
  18. Kitayama, Y., Yamanaka, N., Kawamura, E., Kuroda, N. and Okamoto, E. (1997). Hepatoprotective effect of the endothelin receptor antagonist TAK-044 against ischemia-reperfusion injury in the canine liver. Hepatology 25, 938-942 https://doi.org/10.1002/hep.510250425
  19. Koudstaal, J., Dijkhuis, F. W. J. and Hardonk, M. J. (1991). Selective depletion of Kupffer cells after intravenous administration of gadolinium chloride. In Cells of the Hepatic Sinusoid ( E. Wisse, D. L. Knook, R. S. McKuskey, Eds.), pp. 87. The Kupffer Cell Foundation, Leiden
  20. Okumura, S., Takei, Y., Kawano, S., Nagano, K., Masuda, E., Goto, M., Tsuji, S., Michida, T., Chen, S. S., Kashiwagi, T. and et al. (1994). Vasoactive effect of endothelin-1 on rat liver in vivo. Hepatology 19, 155-161
  21. Pannen, B. H., Bauer, M., Zhang, J. X., Robotham, J. L. and Clemens, M. G. (1996). A time-dependent balance between endothelins and nitric oxide regulating portal resistance after endotoxin. Am. J. Physiol. 271, H1953-1961
  22. Shah, V., Haddad, F. G., Garcia-Cardena, G., Frangos, J. A., Mennone, A., Groszmann, R. J. and Sessa, W. C. (1997). Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids. J. Clin. Invest. 100, 2923-2930 https://doi.org/10.1172/JCI119842
  23. Sonin, N. V., Garcia-Pagan, J. C., Nakanishi, K., Zhang, J. X. and Clemens, M. G. (1999). Patterns of vasoregulatory gene expression in the liver response to ischemia/reperfusion and endotoxemia. Shock 11, 175-179 https://doi.org/10.1097/00024382-199903000-00004
  24. Voerman, H. J., Stehouwer, C. D., van Kamp, G. J., Strack van Schijndel, R. J., Groeneveld, A. B. and Thijs, L. G. (1992). Plasma endothelin levels are increased during septic shock. Crit. Care Med. 20, 1097-1101 https://doi.org/10.1097/00003246-199208000-00005
  25. Weitzberg, E., Lundberg, J. M. and Rudehill, A. (1991). Elevated plasma levels of endothelin in patients with sepsis syndrome. Circ. Shock 33, 222-227
  26. Wu, J. Z., Ogle, C. K., Fischer, J. E., Warden, G. D. and Ogle, J. D. (1995). The mRNA expression and in vitro production of cytokines and other proteins by hepatocytes and Kupffer cells following thermal injury. Shock 3, 268-273 https://doi.org/10.1097/00024382-199504000-00004

Cited by

  1. Gadolinium chloride pre‑treatment reduces the inflammatory response and preserves intestinal barrier function in a rat model of sepsis vol.22, pp.4, 2021, https://doi.org/10.3892/etm.2021.10577