• 제목/요약/키워드: LPC+-파일

검색결과 4건 처리시간 0.017초

적응 분할과 벡터 근사에 기반한 고차원 이미지 색인 기법 (High-Dimensional Image Indexing based on Adaptive Partitioning ana Vector Approximation)

  • 차광호;정진완
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제29권2호
    • /
    • pp.128-137
    • /
    • 2002
  • 이 논문은 고차원 이미지 데이타의 효율적인 색인을 위한 LCP+-file을 제시한다. 멀티미디어 데이타의 사용이 증가하면서 고차원 이미지 데이타의 색인과 검색의 지원에 대한 요구가 증가하고 있다. 최근에 고차원 데이타의 색인을 위해 벡터 근사에 기반한 LPC-file (5)이 개발되었다. LPC-file은 특히, 데이터 집합이 균일하게 분포할 때는 좋은 성능을 나타내지만 클러스터(cluster)를 이를 때는 성능이 하락한다. 본 논문은 강하게 클러스터를 이루는 이미지 데이타 집합에 대해 LPC-file의 성능을 향상시킨 LCP+-file을 제시한다. 기본 아이디어는 고밀도 클러스터를 갖는 부분 공간을 찾기 위해 데이타 공간을 적응적으로 분할하고, 그 공간에 대해 벡터 근사의 식별 능력을 향상시키기 위해 더 많은 수의 비트를 할당한다. 그러나 분할된 공간이 비트들을 공유하기 때문에 사용되는 전체 비트 수는 오히려 줄어든다. 실험 결과에 따르면 LCP+-file은 강하게 클러스터를 이루는 이미지 데이터 집합에 대해 LPC-file의 성능을 크게 향상시킨다.

GC-트리 : 이미지 데이타베이스를 위한 계층 색인 구조 (GC-Tree: A Hierarchical Index Structure for Image Databases)

  • 차광호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제31권1호
    • /
    • pp.13-22
    • /
    • 2004
  • 멀티미디어 데이타의 사용이 증가함에 따라 고차원 이미지 데이타에 대한 효율적인 색인과 검색 기법이 크게 요구되고 있다. 그러나 많은 노력에도 불구하고 현재의 다차원 색인 기법들은 고차원 데이타 공간에서 만족할 만한 성능을 보여주지 못하고 있다. 이러한 소위 차원의 저주를 해결하기 위해 최근에 차원을 줄이거나 근사 해를 구하는 둥의 접근법이 시도되고 있지만 이러한 방법들은 근본적으로 정확도의 상실이라는 문제를 갖고 있다. 정확도의 보존을 위해 VA-file, LPC-file둥과 같이 벡터 근사에 기반 한 기법들이 최근에 개발되었다. 그러나 이 기법은 검색 성능이 색인 파일의 크기에 큰 영향을 받으며, 한번에 큰 검색 공간을 줄이는 계층 색인 구조의 장점을 상실한다. 본 논문에서는 이미지 데이터베이스에서 유사성 질의를 위한 새로운 계층 색인 구조인 GC-트리를 제안한다. GC-트리는 밀도 함수에 기초하여 데이타 공간을 적응적으로 분할하고, 색인 구조를 동적으로 생성한다. 이러한 특성을 갖는 GC-트리는 군집화 된 고차원 이미지 데이타 검색에 훌륭한 성능을 나타낸다.

내용기반 오디오 장르 분류를 위한 신호 처리 연구 (A Study on the Signal Processing for Content-Based Audio Genre Classification)

  • 윤원중;이강규;박규식
    • 대한전자공학회논문지SP
    • /
    • 제41권6호
    • /
    • pp.271-278
    • /
    • 2004
  • 본 논문에서는 디지털 신호처리를 이용하여 Classic, Hiphop, Jazz, Rock, Speech 등 5개의 오디오 장르를 자동적으로 분류하는 내용기반 오디오 장르 분류기를 제안하였다. 20초 분량의 질의 오디오로부터 23ms 크기의 Hamming window를 이동시켜 가며 Spectral Centroid, Rolloff, Flux 등 STFT 기반의 특징 계수들과 MFCC, LPC 등의 계수들을 구하여 총 54차에 해당하는 특징 벡터 열을 추출하였으며 분류 알고리즘으로는 k-NN, Gaussian, GMM 분류기를 사용하였다. 최적의 특징 벡터를 선별하는 알고리즘으로 총 54차의 특징벡터 중 가장 성능이 좋은 특징 계수들을 찾아 순차적으로 재배치하는 SFS(Sequential Forward Selection)방법을 사용하였고, 이를 이용하여 최적화 된 10차의 특징 벡터만을 선정해서 오디오 장르 분류에 사용하였다. SFS를 적용한 실험 결과 약 90% 가까운 분류 성공률을 보이고 있어 기존 연구에 비하여 약 10%∼20% 정도의 성능 향상을 꾀 할 수 있었다. 한편 실제 사용자들이 오디오 자동 장르 분류 시스템을 사용할 때 일어날 수 있는 상황을 가정하여 임의 구간에서 질의 데이터를 추출하여 실험을 수행하였으며 실험 결과 오디오 파일의 맨 앞과 맨 뒤 등 worst-case 질의를 제외하고는 약 80%대의 분류 성공률을 얻을 수 있었다.

원격 제어 기능을 포함한 교육용 모바일 로봇 시스템의 설계 및 구현 (A Design and Implementation of Educational Mobile Robot System including Remote Control Function)

  • 정중수;정광욱
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권4호
    • /
    • pp.33-40
    • /
    • 2015
  • 본 논문에서는 원격 제어 기능을 갖는 교육용 로봇 시스템을 임베디드 환경에서 설계 및 구현하였다. 로봇 시스템의 기반이 되는 센싱 정보 처리와 소프트웨어 설계, 및 프로그래밍 실습 교육을 위한 템프릿 설계 기법을 제시하였다. 시스템의 개발 환경으로 CPU는 Cortex-M3 코어를 사용한 LPC1769 프로세서, 디버깅 환경은 LPCXPRESSO, 펌웨어 개발 언어는 C언어를, OS는 FreeRTOS를 사용하였다. 시스템 동작 과정은 무선 RF 통신을 이용하여 서버의 제어 명령을 수신하여, 교육용 로봇의 다양한 센서를 구동시킨다. 교육 과정으로는 로봇의 기본 동작 프로그램을 제공하여 실습생으로 하여금 컴파일 및 로딩이후 데모 동작을 우선 실행하도록 하였다. 이후 이의 데모 기능의 프로그래밍 기술을 교육하기 위해 단계별로 교육하도록 하였다. 로봇 동작과정에 대한 실습과 그에 대한 프로그래밍 기법이다. 또한 서버와 로봇간 통신 기법은 RF 통신환경에서 독자적인 프로토콜이 설계되었고, 로봇 센싱 데이터 처리과정을 분석하여 만족할 만한 성능 처리 결과를 제시하였다.