• Title/Summary/Keyword: LOSS MODULUS

Search Result 373, Processing Time 0.033 seconds

Changes in Photosynthetic Performance and Water Relation Parameters in the Seedlings of Korean Dendropanax Subjected to Drought Stress (건조 스트레스에 따른 황칠나무 유묘의 광합성과 수분특성인자 변화)

  • Lee, Kyeong Cheol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.2
    • /
    • pp.181-187
    • /
    • 2018
  • Background: This study aimed to investigate out the influence of drought stress on the physiological responses of Dendropanax morbifera seedlings. Methods and Results: Drought stress was induced by discontinuing water supply for 30 days. Under drought stress, photosynthetic activity was significantly reduced with decreasing soil water content (SWC), as revealed by the parameters such as Fv/Fm, maximum photosynthetic rate ($P_{N\;max}$), stomatal conductance ($g_s$), stomatal transpiration rate (E), and intercellular $CO_2$ concentration (Ci). However, water use efficiency (WUE) was increased by 2.5 times because of the decrease in $g_s$ to reduce transpiration. Particularly, E and $g_s$ were remarkably decreased when water was withheld for 21 days at 6.2% of SWC. Dendropanax morbifera leaves showed osmotic adjustment of -0.30 MPa at full turgor and -0.13 MPa at zero turgor. In contrast, the maximum bulk modulus of elasticity ($E_{max}$) did not change significantly. Thus, Dendropanax morbifera seedlings could tolerate drought stress via osmotic adjustment. Conclusions: Drought avoidance mechanisms of D. morbifera involve reduction in water loss from plants, through the control of stomatal transpiration, and reduction in cellular osmotic potential. Notably photosynthetic activity was remarkably reduced, to approximately 6% of the SWC.

Mechanical Properties and Neutron Shielding Rate of Concrete with Borosilicate-Glasses and Amorphous Boron Steel Fiber (붕규산유리 및 비정질 붕소강 섬유를 혼입한 콘크리트의 역학적 성능 및 중성자 차폐성능 평가)

  • Lee, Jun-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.269-275
    • /
    • 2016
  • In this study, the mechanical properties and the neutron shielding rate of concrete with the borosilicate glass and the amorphous boron steel fiber were investigated. The measures of this investigation includes air contents, slump loss, compressive strength, static modulus of elasticity, compressive toughness, flexural strength, flexure toughness and neutron shielding rate. As a result, the neutron shielding rate of the concrete with borosilicate glasses increased even though the compressive strength and flexural strength decreased in comparison with that of plain concrete. Also, the mechanical toughness and the neutron shielding rate of the concrete with amorphous boron steel fiber increased in comparison with that of plain concrete.

Correlation Between the Composition of Compliant Coating Material and Drag Reduction Efficiency (유연벽면 점탄성 소재 배합비와 저항저감 효과의 상관관계)

  • Lee, In-Won;An, Nam-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.389-395
    • /
    • 2009
  • A specially designed flat plate was mounted vertically over the axial line in the wind tunnel of the Pusan National University. Strain balances were mounted in the trailing part of the plate to measure the skin friction drag over removable insertions of $0.55{\times}0.25m^2$ size. A set of the insertions was designed and manufactured: 3 mm thick polished metal surface and three compliant surfaces. The compliant surfaces were manufactured of a silicone rubber Silastic$^{(R)}$ S2 (Dow Corning company). To modify the viscoelastic properties of the rubber, its composition was varied: 90% rubber + 10% catalyst (standard), 92.5% + 7.5% (weak), 85% + 15% (strong). Modulus of elasticity and the loss factor were measured accurately for these materials in the frequency range from 40 Hz to 3 kHz. The aging of the materials (variation of their properties) for the period of one year was documented as well. Along with the drag measurement using the strain balance, velocity and pressure were measured for different coating. The strong compliant coating achieved 5% drag reduction within a velocity range $20{\sim}40$ m/s while standard and weak coatings increased drag reduction.

Rheological Behavior of Poloxamer 407 Solution and Effect of Poly(ethylene glycol) on the Gelation

  • Lee, Ka-Young;Cho, Cheong-Weon;Lee, Yong-Bok;Shin, Sang-Chul;Oh, In-Joon
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.1
    • /
    • pp.15-19
    • /
    • 2003
  • The rheological behavior of poloxamer 407 solution as function of concentration and temperature was evaluated by rotational viscometer. The viscosity of poloxamer 407 solution was increased as the concentration of poloxamer 407 and temperature increased. At $4^{\circ}C$, poloxamer 407 solution showed the Newtonian flow characteristics regardless of concentration. Upon increasing temperature the poloxamer solution changed to the pseudoplastic flow pattern. And at gelation temperature, rheological profiles showed the abrupt increase in viscosity. Gelation temperature was decreased as the concentration of poloxamer 407 increased, while it increased as the concentration of poly(ethylene glycol) 4000 increased. Poly(ethylene glycol) might be expected to reduce the driving force for hydrophobic interaction resulting in slow gelation. From the viscoelastic properties of poloxamer gel system, we obtained the storage and loss modulus depending on the shear stress and frequency. And the sol-gel transition temperature was also obtained from the viscoelastic properties of poloxamer 407 gel.

Gas Pressure Sintering, Mechanical Properties and Microstructure of Three Binds of Si3N4 Ceramics

  • Ha, Sung-Soo;Kim, Chang-Sam;Cheong, Deoek-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.723-727
    • /
    • 2004
  • Three kinds of $Si_3N_4$ powders (M-11, SN-ESP, and SN-E10) were gas-pressure sintered at $1700-1900^{\circ}C$ for 2 h under 18 atm $N_2$. Their densification behavior was investigated and compared as well as the mechanical properties and microstructure of the resulting ceramics. SN-ESP and SN-E10 started to reach nearly full densification at $1750^{\circ}C$ and showed almost no decomposition up to $1900^{\circ}C$. In contrast, M-11 was not fully densified until $1800^{\circ}C$ and showed about $3\%$ weigh loss at $1900^{\circ}C$ indicating poor thermal stability. SN-ESP and SN-E10 showed much higher strength both at room temperature and $1200^{\circ}C$ than M-11 when fully densified. Compared with SN-ESP, SN-E10 was not only a little better in strength (both at room temperature and $1200^{\circ}C$) and fracture toughness but also much higher in the Weibull modulus due to more interlocked microstructure by well elongated grains.

Identification of Fractional-derivative-model Parameters of Viscoelastic Materials Using an Optimization Technique (최적화 기법을 이용한 점탄성물질의 분수차 미분모델 물성계수 추정)

  • Kim, Sun-Yong;Lee, Doo-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1192-1200
    • /
    • 2006
  • Viscoelastic damping materials are widely used to reduce noise and vibration because of its low cost and easy implementation, for examples, on the body structure of passenger cars, air planes, electric appliances and ships. To design the damped structures, the material property such as elastic modulus and loss factor is essential information. The four-parameter fractional derivative model well describes the dynamic characteristics of the viscoelastic damping materials with respect to both frequency and temperature. However, the identification procedure of the four-parameter is very time-consuming one. In this study a new identification procedure of the four-parameters is proposed by using an FE model and a gradient-based numerical search algorithm. The identification procedure goes two sequential steps to make measured frequency response functions(FRF) coincident with simulated FRFs: the first one is a peak alignment step and the second one is an amplitude adjustment step. A numerical example shows that the proposed method is useful in identifying the viscoelastic material parameters of fractional derivative model.

Stability and Rheology of Cream Containing Sopoongsan (소풍산을 첨가한 크림의 안정성 및 물성 변화)

  • An, Bong-Jeun;Lee, Jin-Young;Lee, Chang-Eon;Son, Jun-Ho;Park, Jung-Mi;Park, Tae-Soon
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.404-410
    • /
    • 2005
  • Sopoongsan is an oriental medicinal composition including 12 medicinal herbs. Sopoongsan is known to have anti-inflammatory, antimicrobial, anti-allergic, and anticancer effects on human skin. The results of stability test showed that the creams containing Sopoongsan extracts were very stable at both accelerated temperature conditions and sun-light. And pH and viscosity of each cream did not change greatly for 56 days. From the particle size and rheological measurements, it can be known that when the amount of the Sopoongsan extracts increases, the mean value of particle size decreases, and the value of the complex modulus and loss angle increases, which means the Sopoongsan extracts help stabilize the emulsion. From the result of human patch test to assess the safety of cream containing Sopoongsan extracts, there was no stimulus of negative reaction on skin. In result of the user tests, it can be known that the higher concentration of the Sopoongsan was preferred by customers.

Fracture toughness of high performance concrete subjected to elevated temperatures Part 1 The effects of heating temperatures and testing conditions (hot and cold)

  • Zhang, Binsheng;Cullen, Martin;Kilpatrick, Tony
    • Advances in concrete construction
    • /
    • v.2 no.2
    • /
    • pp.145-162
    • /
    • 2014
  • In this study, the fracture toughness $K_{IC}$ of high performance concrete (HPC) was determined by conducting three-point bending tests on eighty notched HPC beams of $500mm{\times}100mm{\times}100mm$ at high temperatures up to $450^{\circ}C$ (hot) and in cooled-down states (cold). When the concrete beams exposed to high temperatures for 16 hours, both thermal and hygric equilibriums were generally achieved. $K_{IC}$ for the hot concrete sustained a monotonic decrease tendency with the increasing temperature, with a sudden drop at $105^{\circ}C$. For the cold concrete, $K_{IC}$ sustained a two-stage decrease trend, dropping slowly with the heating temperature up to $150^{\circ}C$ and rapidly thereafter. The fracture energy-based fracture toughness $K_{IC}$' was found to follow similar decrease trends with the heating temperature. The weight loss, the fracture energy and the modulus of rapture were also evaluated.

Study on the Development of Cosmetic Emulsion Cream for Patients with Atopic Dermatitis using Scutellaria Baicalensis (황금(黃芩)을 이용한 아토피성 피부용 한방화장품 제형화에 관한 연구)

  • Park, Chan-Ik
    • The Korea Journal of Herbology
    • /
    • v.21 no.2
    • /
    • pp.47-53
    • /
    • 2006
  • Objectives : This study was conducted to determine if Scutellaria baicalensis can be used in cosmetic emulsion cream for patients with atopic dermatitis. Methods : Scutellaria baicalensis extract was obtained with the use of butylene glycol through the pressurized solvent extraction(PSE). The antioxidative activity was assessed through SOD-like activity measurement and skin irritating potential was tested using human patch test. Antimicrobial activity was measured by the clear zone formed against Staphylococcus aureus and Escherichia coli and the rheological effects on the emulsion creams were examined using oscillation test. Results : The SOD-like activity increased dose-dependently and was about 90% at 1,000ppm of Scutellaria baicalesis extract. And Scutellaria baicalensis extract did not show any potential to be irritating to the human skin, but it could not be used as an antimicrobial agent for its poor antimicrobial activity against Staphylococcus aureus. The complex modulus decreased by 1,000 pascals and the loss angle also decreased by 20% with the addition of Scutellaria baicalensis extract into the cosmetic emulsion creams, that is, the extract can confer more elastic property on the vehicle. Conclusion : From those results, Scutellaria baicalensis extract can be effectively used as an antioxidant and reinforces the elastic skincare film formed by the application of cream for patients with atopic dermatitis.

  • PDF

Freeze-thaw of Durability for Premixed Fly Ash Concrete (프리믹스 플라이애시 콘크리트 동결-융해 특성)

  • Hong, Seung-Ho;Han, Seung-Hwan;Lee, Byung-Duk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.261-262
    • /
    • 2009
  • The prevent methods of Alkali-Silica Reaction (ASR) are studying after the failure cases by ASR were reported in Korea. In this study, the freeze-thaw test and scaling test for premixed fly ash cement were performed. The ratio of fly ash and cement is 20 percent and 80 percent by weight of total cementious material. The results show that the dynamic modulus after 300 cycles the freeze-thaw test for most of specimen except the specimen have less 3% air was more than 90 % and the loss of weigh the specimen after 50 cycles scaling test was less than 1kg/$m^3$.

  • PDF