Purpose - In recent years, many firms have attempted various approaches to cope with the continual increase of aviation transportation. The previous research into freight charge forecasting models has focused on regression analyses using a few influence factors to calculate the future price. However, these approaches have limitations that make them difficult to apply into practice: They cannot respond promptly to small price changes and their predictive power is relatively low. Therefore, the current study proposes a freight charge-forecasting model using time series data instead a regression approach. The main purposes of this study can thus be summarized as follows. First, a proper model for freight charge using the autoregressive integrated moving average (ARIMA) model, which is mainly used for time series forecast, is presented. Second, a modified ARIMA model for freight charge prediction and the standard process of determining freight charge based on the model is presented. Third, a straightforward freight charge prediction model for practitioners to apply and utilize is presented. Research design, data, and methodology - To develop a new freight charge model, this study proposes the ARIMAC(p,q) model, which applies time difference constantly to address the correlation coefficient (autocorrelation function and partial autocorrelation function) problem as it appears in the ARIMA(p,q) model and materialize an error-adjusted ARIMAC(p,q). Cargo Account Settlement Systems (CASS) data from the International Air Transport Association (IATA) are used to predict the air freight charge. In the modeling, freight charge data for 72 months (from January 2006 to December 2011) are used for the training set, and a prediction interval of 23 months (from January 2012 to November 2013) is used for the validation set. The freight charge from November 2012 to November 2013 is predicted for three routes - Los Angeles, Miami, and Vienna - and the accuracy of the prediction interval is analyzed using mean absolute percentage error (MAPE). Results - The result of the proposed model shows better accuracy of prediction because the MAPE of the error-adjusted ARIMAC model is 10% and the MAPE of ARIMAC is 11.2% for the L.A. route. For the Miami route, the proposed model also shows slightly better accuracy in that the MAPE of the error-adjusted ARIMAC model is 3.5%, while that of ARIMAC is 3.7%. However, for the Vienna route, the accuracy of ARIMAC is better because the MAPE of ARIMAC is 14.5% and the MAPE of the error-adjusted ARIMAC model is 15.7%. Conclusions - The accuracy of the error-adjusted ARIMAC model appears better when a route's freight charge variance is large, and the accuracy of ARIMA is better when the freight charge variance is small or has a trend of ascent or descent. From the results, it can be concluded that the ARIMAC model, which uses moving averages, has less predictive power for small price changes, while the error-adjusted ARIMAC model, which uses error correction, has the advantage of being able to respond to price changes quickly.
This paper aims at providing valuable insights on Financial Fraud Detection on a mobile money transactional activity. We have predicted and classified the transaction as normal or fraud with a small sample and massive data set using Azure and Spark ML, which are traditional systems and Big Data respectively. Experimenting with sample dataset in Azure, we found that the Decision Forest model is the most accurate to proceed in terms of the recall value. For the massive data set using Spark ML, it is found that the Random Forest classifier algorithm of the classification model proves to be the best algorithm. It is presented that the Spark cluster gets much faster to build and evaluate models as adding more servers to the cluster with the same accuracy, which proves that the large scale data set can be predictable using Big Data platform. Finally, we reached a recall score with 0.73, which implies a satisfying prediction quality in predicting fraudulent transactions.
The role of empirical equation to predict the performance of polymer electrolyte membrane fuel cell is important. The activation, ohmic and mass transfer losses were separated in a polarization curve, and the curve fitting according to each region was performed using Kim's model and Hao's model. Changes of each loss were compared according to operation variables of the temperature, pressure, oxygen concentration and membrane thickness. The existing model showed a good fitting convergence, but less fitting accuracy in the separated loss region. A new model using the convergence coefficient was suggested to improve the accuracy of performance prediction of fuel cells of which results were demonstrated.
Level of Service (LOS) is one of ways to evaluate operational conditions. It is very important factor in evaluation especially for the facility of highways. However, some studies proved that ${\upsilon}/c$ ratio and accident rate is appeared like a second function which has a U-form. It means there is a gap between LOS and safety of highway facilities. Therefore, this study presents a method for evaluation of a signalized intersection which is considered both smooth traffic operation (delay) and traffic safety (accident). Firstly, as a result of our research, accident rates and EPDO are decreased when it has a big delay. In that reason, it is necessary to make a new Level of Service included traffic safety. Secondly, this study has developed a negative binominal regression model which is based on the relation between accident patterns and stream. Thirdly, standards of LOS are presented which is originated from calculation between annual delay costs and annual accident cost at each intersection. Lastly, worksheet form is presented as an expression to an estimation step of a signalized intersection with traffic accident prediction model and new LOS.
A one-dimensional kinematic wave model was used to calculate temporal and spatial changes of the highway runoff. Infiltration into pavement was considered using Darcy's law, as a function of flow depth and pavement hydraulic conductivity ($K_p$). The model equation was calculated using the method of characteristics (MOC), which provided stable solutions for the model equation. 22 storm events monitored in a highway runoff monitoring site in west Los Angeles in the U.S. were used for the model calculation and evaluation. Using three different values of $K_p$ ($5{\times}10^{-6}$, $10^{-5}$, and $2{\times}10^{-5}cm/sec$), total runoff volume and peak flow rate were calculated and then compared with the measured data for each storm event. According to the calculation results, $10^{-5}cm/sec$ was considered a site representative value of $K_p$. The study suggested a one-dimensional method to predict hydrodynamic behavior of highway runoff, which is required for the water quality prediction.
Jianyang Li;Chonghong Zhang;Ignacio Martin-Bragado;Yitao Yang;Tieshan Wang
Nuclear Engineering and Technology
/
v.55
no.3
/
pp.958-967
/
2023
This work studies the defect features in a dilute FeMnNi alloy by an Object Kinetic Monte Carlo (OKMC) model based on the "grey-alloy" method. The dose rate effect is studied at 573 K in a wide range of dose rates from 10-8 to 10-4 displacement per atom (dpa)/s and demonstrates that the density of defect clusters rises while the average size of defect clusters decreases with increasing dose rate. However, the dose-rate effect decreases with increasing irradiation dose. The model considered two realistic mechanisms for producing <100>-type self-interstitial atom (SIA) loops and gave reasonable production ratios compared with experimental results. Our simulation shows that the proportion of <100>-type SIA loops could change obviously with the dose rate, influencing hardening prediction for various dose rates irradiation. We also investigated ways to compensate for the dose rate effect. The simulation results verified that about a 100 K temperature shift at a high dose rate of 1×10-4 dpa/s could produce similar irradiation microstructures to a lower dose rate of 1×10-7 dpa/s irradiation, including matrix defects and deduced solute migration events. The work brings new insight into the OKMC modeling and the dose rate effect of the Fe-based alloys.
There are several kinds of service standards for 3G($3^{rd}$-Generation) wireless communication as WCDMA, CDMA2000 and WiBro(Wireless Broadband Internet). Especially WiBro Wave2 system is a marked currnt issue. In this paper, we describe on the cell plan tool to desgin WiBro Wave2 network. For this, we treat from basic theory to practical substance to produce new(or modified) path loss prediction model for 2.3GHz. And we explain the method how to implement new technology MIMO(Multiple Input Multiple Output) deployed in Wave2 system. Also we emphasize on the importance of LOS(Line Of Sight) analysis in WiBro network design.
Proceedings of the Korea Information Processing Society Conference
/
2022.05a
/
pp.509-512
/
2022
수술 중 저혈압 예측은 환자의 안전과 직결되는 중요한 과제이다. 그러나 인간이 저혈압을 예측하는 것은 많은 경험과 노하우를 필요로 하며, 현재 연구되고 있는 예측 기술은 단일 정보를 활용하여 복합적인 원인을 반영하지 못하거나, 침습적으로 데이터를 획득하여 환자에게 불편함을 준다. 비침습적으로 수집한 데이터를 통한 저혈압 발생 예측에 대한 연구는 꾸준히 진행되어 왔으나, 기존 딥러닝을 이용한 접근방법으로는 정확도가 낮다. 본 논문에서는 그 원인을 1)데이터 전처리 2)데이터 불균형 3)기존 모델의 한계로 구분하고, 이를 해결 가능한 방안을 제시한다. 실험 결과 CNN*CNN에서 Focal Loss를 사용할 때, 가장 높은 성능을 내는 것을 확인했다.
Park, Jung-Ha;Park, Tae-Hoon;Im, Jong-Moon;Park, Je-Jin;Yoon, Pan;Ha, Tae-Jun
Journal of Korean Society of Transportation
/
v.23
no.7
s.85
/
pp.77-86
/
2005
Level of service(LOS) is a quantify measure describing operational conditions within a traffic stream, generally, in terms of such service measures as speed, travel time, freedom to measures, traffic interruptions, comfort and convenience. The LOS is leveled by highway facilities according to measure of effectiveness(MOE) and then used to evaluate performance capacity. The current evaluation of a urban road is performed by only a aspect of traffic operation without any concepts of safety. Therefore, this paper presents a method for evaluation of risk order for urban road with new MOE, user cost analysis, considering both smooth traffic operation(congestion) and traffic safety(accident). The user coat is included traffic accident cast by traffic safety and traffic congestion cost by traffic operation. First of all, a number of traffic accident and accident rate by highway geometric is inferred from urban road traffic accident prediction model (Poul Greibe(2001)) Secondly, a user cost is inferred as traffic accident cast and traffic congestion cost is putting together. Thirdly, a method for evaluation of a urban road is inferred by user cost analysis. Fourthly a accident rate by segment predict with traffic accidents and data related to the accidents in $1996{\sim}1998$ on 11 urban road segments, Gwang-Ju, predicted accident rate. Traffic accident cost predict using predicted accident rate, and, traffic congestion cost predict using predicted average traffic speed(KHCM). Fifthly, a risk order are presented by predicted user cost at each segment in urban roads. Finally, it si compared and evaluated that LOS of 11 urban road segments, Gwang-Ju, by only a aspect of traffic operation without any concepts of safety and risk order by a method for evaluation of urban road in this paper.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.182-182
/
2020
최근 지구 온난화나 기상이변으로 인해 세계각지에서 많은 자연재해가 발생하고 있고 우리나라도 최근 전국 각지에서 국지성호우에 의한 많은 피해가 발생하고 있다. 특히 국지성호우로 인해 발생하는 산간지역의 토석류는 많은 재산피해를 일으키고 있다. 최근 토석, 토사, 혹은 부유 잡목 등의 유출로 인한 피해를 막기 위해 많은 사방댐을 축조하고 있으나 표면침식에 의해서 유출되는 토석량 혹은 토사량을 정확히 예측하지 못한다면 축조된 사방댐은 금방 제구실을 못할 수 있거나 혹은 과대 설계 및 시공되어 건설비를 낭비할 수 있다. 따라서 최적의 사방댐 건설을 위해 정확한 토석량의 산정은 매우 중요한 전제조건이라 할 수 있다. 본 연구에서는 강원도 인제군 산간지역 4곳의 사방댐유역에 대해 토석량 예측모형 MSDPM(Multi-Sequence Debris Prediction Model)과 LADMP(Los Angeles District Method for Prediction of sediments yield)를 이용하여 산정한 토석량과 실제 준설량을 비교하였다. 이를 위해 강원 산간지역에 맞도록 예측모형을 보정하였으며 토석류 유발 강우강도(Threshold Maximum 1-hr Rainfall Intensity)와 토석류 유발 최소강우량(Total Minimum Rainfall Amount)개념을 도입하여 예측모형식을 적용하였다. 위 식이 갖고 있는 대표적 특징 중 하나인 산불계수를 사용해야 하지만 본 연구지역은 산불 피해규모가 미미하여 산불의 영향은 고려하지 않고 토석량을 산정하였다. 두 예측모형의 계산결과와 실제 준설량을 비교해본 결과, MSDPM의 결과가 LADMP의 결과보다 준설량과 더 일치하는 것으로 나타났다. 실제 준설량과 MSDPM의 계산결과는 평균 17.37%의 차이를 나타냈고 LADMP의 계산결과는 평균 41.87%의 차이를 나타냈다. 본 연구에서 사용된 토석량 예측 모형은 앞으로 많은 산지유역의 토석량 예측에 사용이 가능 할 것으로 판단된다. 하지만 본 연구에서 사용된 자료의 제한성 때문에 앞으로 많은 실측 준설자료를 통하여 예측모형식을 보정하는 작업이 우선되어야 할 것으로 판단된다. 이를 위해서 많은 산지유역의 토석량을 장시간 실측하여 데이터를 축적하고 이를 사용하여 다양한 토석량 예측모형을 검보정하는 노력이 필요할 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.