• Title/Summary/Keyword: LOAD CELL

Search Result 1,188, Processing Time 0.029 seconds

Design and Performance Evaluation of a 3-Dimensional Nonblocking Copy Network for Multicast ATM Switches (ATM 멀티캐스트 스위치를 위한 3차원 논블럭킹 복사망의 설계 및 성능평가)

  • 신재구;손유익
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.6
    • /
    • pp.696-705
    • /
    • 2002
  • This paper presents a new copy network for multicast ATM switches. Many studies have been carried out up to date since the proposition of Lee's copy network. However, the overflows and cell conflicts within the switch have still been raised a problem in argument. In order to reduce those problems, we proposed a 3-dimensional multicast switching architecture which has shared buffers in this paper. The proposed architecture can reduce the overflows and cell conflicts through multiple paths and output ports even in the high load environments. Also, we proposed a cell splitting algorithm which handles the cell in the case of large fan-out, and a copy network to increase throughput by expanding the Lee's Broadcast Banyan Network(BBN). Cell copy uses the Boolean interval splitting algorithm and the multicast pattern of the cells according to the self-routing characteristics of the network. In the proposed copy network, we improve the problems such as overflow, cell splitting of large fanout, cell conflicts, etc., which were still existed in the Lee's network. The results of performance evaluation by computer simulation show that the proposed scheme has better throughput, cell loss rate and cell delay than the conventional method.

EFFECT OF INSTRUMENT COMPLIANCE ON THE POLYMERIZATION SHRINKAGE STRESS MEASUREMENTS OF DENTAL RESIN COMPOSITES (측정장치의 compliance 유무가 복합레진의 중합수축음력의 측정에 미치는 영향)

  • Seo, Deog-Gyu;Min, Sun-Hong;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.2
    • /
    • pp.145-153
    • /
    • 2009
  • The purpose of this study was to evaluate the effect of instrument compliance on the polymerization shrinkage stress measurements of dental composites. The contraction strain and stress of composites during light curing were measured by a custom made stress-strain analyzer, which consisted of a displacement sensor, a cantilever load cell and a negative feedback mechanism. The instrument can measure the polymerization stress by two modes: with compliance mode in which the instrument compliance is allowed, or without compliance mode in which the instrument compliance is not allowed. A flowable (Filtek Flow: FF) and two universal hybrid (Z100: Z1 and Z250: Z2) composites were studied. A silane treated metal rod with a diameter of 3.0 mm was fixed at free end of the load cell, and other metal rod was fixed on the base plate. Composite of 1.0 mm thickness was placed between the two rods and light cured. The axial shrinkage strain and stress of the composite were recorded for 10 minutes during polymerization. and the tensile modulus of the materials was also determined with the instrument. The statistical analysis was conducted by ANOVA. paired t-test and Tukey's test (${\alpha}<0.05$). There were significant differences between the two measurement modes and among materials. With compliance mode, the contraction stress of FF was the highest: 3.11 (0.13). followed by Z1: 2.91 (0.10) and Z2: 1.94 (0.09) MPa. When the instrument compliance is not allowed, the contraction stress of Z1 was the highest: 17.08 (0.89), followed by FF: 10.11 (0.29) and Z2: 9.46 (1.63) MPa. The tensile modulus for Z1, Z2 and FF was 2.31 (0.18), 2.05 (0.20), 1.41 (0.11) GPa, respectively. With compliance mode. the measured stress correlated with the axial shrinkage strain of composite: while without compliance the elastic modulus of materials played a significant role in the stress measurement.

R&D Trends and Technology Development Plan on Portable Fuel Cell for Future Soldier System (미래병사체계를 위한 휴대형 연료전지 기술개발 동향 및 발전방안)

  • Lee, Yu Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.618-624
    • /
    • 2020
  • A portable power supply system for soldiers must be able to supply electric energy corresponding to the power consumption of combat support troops, and have a carrying load in a range that does not impair the combatant's ability to execute operations. In particular, as the total required power of combat equipment increases with the advances in the future soldier system, a portable, lightweight power supply system with high efficiency is essential. A fuel cell has a high energy-to-weight density compared to lithium batteries, which are used mainly as a military power source system. Therefore, it is capable of miniaturization and lightweight, making active R&D to a portable power supply system. In this paper, the characteristics of the fuel cell applied as a portable power supply system, and the R&D trends of domestic and foreign military portable fuel cell systems were investigated. The current status of domestic technology compared to the level of foreign development was analyzed. In addition, future technology development plans are presented based on the consideration factors when developing a portable fuel cell (power supply stability, portability, and cost reduction) so that it can be used when establishing a plan on the development of a portable fuel cell system for the future soldier system.

Diagnosis of Performance Degradation of Direct Methanol Fuel Cell Stack after Long-Term Operation (장기운전에 의한 직접메탄올 연료전지 스택의 성능 열화 분석)

  • Kim, Sang-Kyung;Hyun, Min-Soo;Lee, Byung-Rok;Jung, Doo-Hwan;Peck, Dong-Hyun;Lim, Seong-Yop
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.775-780
    • /
    • 2011
  • 5-cell DMFC stack was fabricated and operated with the load of 4 A for 4000 hrs. After 4000 hrs operation peak power density of the stack reduced by 27.3%. Two of the five cells did now show performance degradation, the performance of other two was reduced by 40% and the performance of the other decreased by 60%. The amount of performance degradation of each cell by long-term operation did not correlate with the position in the stack. Platinum particle size in the anode catalyst layer of the MEA with the strongest degradation increased and the increase was severer on the position of methanol inlet than on the position of methanol outlet. However, platinum particle size in the cathode catalyst layers did not changed for all the MEA'. Ruthenium crossover from the anode catalyst layer to the cathode catalyst layer through the membrane was observed after 4,000 hrs operation by SEM-EDX and it occurred for all MEA' regardless of the degree of performance degradation. Atomic ratio of ruthenium to platinum in the cathode catalyst layer was the highest in the MEA with the strongest performance degradation.

Design of a CAM-Type Traffic Policing Controller with minimum additional delay (시간지연을 최소화한 CAM형 트래픽 폴리싱 장치 설계)

  • 정윤찬;홍영진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4B
    • /
    • pp.604-612
    • /
    • 2000
  • In order to satisfy the desired QoS level associated with each existing connection, ATM networks require traffic policing during a connection. Users who respect the contract should receive the function of transparent traffic policing without any interruption. However, contract violations should be detected and mediated immediately. So we propose a CAM type policing controller to allow user cell streams to minimize additional delay. The proposed policing scheme controls policing actions including traffic shaping by suitably spacing cells on each virtual circuit. This policing action is based on parallel processing of multiple cell stream which arrive in ATM multiplexed virtual circuits. We have developed an analytical model of the proposed policing scheme to examine the amount of cell loss and delay, which depends on traffic load, the size of policing buffers and minimum spacing cell time.

  • PDF

Real-Time Force Sensing in the Envelope of Zebrafish Egg during Micropipette Penetration

  • Yun, Seok;Kim, Deok-Ho;Kim, Byung-Kyu;Lee, Sang-Ho;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2451-2456
    • /
    • 2003
  • In biological cell manipulation, manual thrust or penetration of an injection pipette into an egg is currently performed by a skilled operator, relying only on visual feedback information. Massive load of various micro injection of either genes, fluid or cells in the postgenomic era calls a more reliable and automatic micro injection system that can test hundreds of genes or cell types at a single experiment. We initiated to study cellular force sensing in zebrafish eggs as the first step for the development of a more controllable micro injection system by any inexperienced operator. Zebrafish eggs at different developmental stages were collected and an integrated biomanipulation system was employed to measure cellular force during penetrating the egg envelope, the chorion. First of all, the biomanipulation system integrated with cellular force sensing instrument is implemented to measure the penetration force of cell membranes and characterize mechanical properties of zebrafish embryo cells. Furthermore, implementation of cellular force sensing system and calibration are presented. Finally, the cellular force sensing of penetrating cell membranes at each developmental stages was experimentally performed. The results demonstrated that the biomanipulation system with force sensing capability can measure cellular force at real-time while the injection operation is undergoing. The magnitude of the measured force was in the range of several hundreds of uN. The precise real-time measurement should provide the first step forwards for the development of an automatic and reliable injection system of various materials into biological cells.

  • PDF

Targeting HSP90 Gene Expression with 17-DMAG Nanoparticles in Breast Cancer Cells

  • Mellatyar, Hassan;Talaei, Sona;Nejati-Koshki, Kazem;Akbarzadeh, Abolfazl
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2453-2457
    • /
    • 2016
  • Background: Dysregulation of HSP90 gene expression is known to take place in breast cancer. Here we used D,L-lactic-co-glycolic acid-polyethylene glycol-17-dimethylaminoethylamino-17-demethoxy geldanamycin (PLGA-PEG-17DMAG) complexes and free 17-DMAG to inhibit the expression of HSP90 gene in the T47D breast cancer cell line. The purpose was to determine whether nanoencapsulating 17DMAG improves the anti-cancer effects as compared to free 17DMAG. Materials and Methods: The T47D breast cancer cell line was grown in RPMI 1640 supplemented with 10% FBS. Encapsulation of 17DMAG was conducted through a double emulsion method and properties of copolymers were characterized by Fourier transform infrared spectroscopy and H nuclear magnetic resonance spectroscopy. Assessment of drug cytotoxicity was by MTT assay. After treatment of T47D cells with a given amount of drug, RNA was extracted and cDNA was synthesized. In order to assess HSP90 gene expression, real-time PCR was performed. Results: Taking into account drug load, IC50 was significant decreased in nanocapsulated 17DMAG in comparison with free 17DMAG. This finding was associated with decrease of HSP90 gene expression. Conclusions: PLGA-PEG-17DMAG complexes can be more effective than free 17DMAG in down-regulating of HSP90 expression, at the saesm time exerting more potent cytotoxic effects. Therefore, PLGA-PEG could be a superior carrier for this type of hydrophobic agent.

Design and Implementation of Modified Current Source Based Hybrid DC - DC Converters for Electric Vehicle Applications

  • Selvaganapathi, S.;Senthilkumar, A.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.57-68
    • /
    • 2016
  • In this study, we present the modern hybrid system based power generation for electric vehicle applications. We describe the hybrid structure of modified current source based DC - DC converters used to extract the maximum power from Photovoltaic (PV) and Fuel Cell system. Due to reduced dc-link capacitor requirement and higher reliability, the current source inverters (CSI) better compared to the voltage source based inverter. The novel control strategy includes Distributed Maximum Power Point Tracking (DMPPT) for photovoltaic (PV) and fuel cell power generation system. The proposed DC - DC converters have been analyzed in both buck and boost mode of operation under duty cycle 0.5>d, 0.5<d<1 and 0.5<d for capable electric vehicle applications. The proposed topology benefits include one common DC-AC inverter that interposes the generated power to supply the charge for the sharing of load in a system of hybrid supply with photovoltaic panels and fuel cell PEM. An improved control of Direct Torque and Flux Control (DTFC) based induction motor fed by current source converters for electric vehicle.In order to achieve better performance in terms of speed, power and miles per gallon for the expert, to accepting high regenerative braking current as well as persistent high dynamics driving performance is required. A simulation model for the hybrid power generation system based electric vehicle has been developed by using MATLAB/Simulink. The Direct Torque and Flux Control (DTFC) is planned using Xilinx ISE software tool in addition to a Modelsim 6.3 software tool that is used for simulation purposes. The FPGA based pulse generation is used to control the induction motor for electric vehicle applications. FPGA has been implemented, in order to verify the minimal error between the simulation results of MATLAB/Simulink and experimental results.

Single-Electron Logic Cells and SET/FET Hybrid Integrated Circuits

  • Kim, S.J.;Lee, C.K.;Lee, J.U.;Choi, S.J.;Hwang, J.H.;Lee, S.E.;Choi, J.B.;Park, K.S.;Lee, W.H.;Paik, I.B.;Kang, J.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.1
    • /
    • pp.52-58
    • /
    • 2006
  • Single-electron transistor (SET)-based logic cells and SET/FET hybrid integrated circuits have been fabricated on SOI chips. The input-output voltage transfer characteristic of the SET-based complementary logic cell shows an inverting behavior where the output voltage gain is estimated to be about 1.2 at 4.2K. The SET/FET output driver, consisting of one SET and three FETs, yields a high voltage gain of 13 and power amplification with a wide-range output window for driving next circuit. Finally, the SET/FET literal gate for a multi-valued logic cell, comprising of an SET, an FET and a constant-current load, displays a periodic voltage output of high/low level multiple switching with a swing as high as 200mV. The multiple switching functionality of all the fabricated logic circuits could be enhanced by utilizing a side gate incorporated to each SET component to enable the phase control of Coulomb oscillations, which is one of the unique characteristics of the SET-based logic circuits.

A Solar Energy Harvesting Circuit with Low-Cost MPPT Control for Low Duty-Cycled Sensor Nodes. (낮은 듀티 동작의 센서 노드를 위한 저비용 MPPT 제어기능을 갖는 빛에너지 하베스팅 회로)

  • Yoon, Eun-Jung;Yang, Min-Jae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.397-400
    • /
    • 2015
  • In this paper a solar energy harvesting system with low-cost MPPT control for low duty-cycled sensor nodes is proposed. The targeted applications are environment, structure monitoring sensor nodes that are not required successively to operate, and MPPT(Maximum Power point Tracking) control using simple circuits is low-cost differently than existing MPPT control. The proposed MPPT control is implemented using linear relationship between the open-circuit voltage of a solar cell. The designed MPPT circuit traces the maximum power point by sampling periodically the open circuit voltage of the solar cell and delivers the maximum available power to the load. The proposed circuit is designed in 0.35um CMOS process. The designed chip area is $975um{\times}1025um$ including pads. Measured results show that the designed system can track the MPP voltage by sampling periodically the open circuit voltage of solar cell.

  • PDF