Single-Electron Logic Cells and SET/FET Hybrid Integrated Circuits

  • Kim, S.J. (Dept. of Physics & Institute for NanoScience & Technology, Chungbuk National University) ;
  • Lee, C.K. (Dept. of Physics & Institute for NanoScience & Technology, Chungbuk National University) ;
  • Lee, J.U. (Dept. of Physics & Institute for NanoScience & Technology, Chungbuk National University) ;
  • Choi, S.J. (Dept. of Physics & Institute for NanoScience & Technology, Chungbuk National University) ;
  • Hwang, J.H. (Dept. of Physics & Institute for NanoScience & Technology, Chungbuk National University) ;
  • Lee, S.E. (Dept. of Physics & Institute for NanoScience & Technology, Chungbuk National University) ;
  • Choi, J.B. (Dept. of Physics & Institute for NanoScience & Technology, Chungbuk National University) ;
  • Park, K.S. (DRAM Process Architecture Team, Memory Division, SAMSUNG Electronics Co.,Ltd.) ;
  • Lee, W.H. (FLASH Device Engineering team, HYNIX Semiconductor Inc.) ;
  • Paik, I.B. (Electronics and Telecommunications Research Institute) ;
  • Kang, J.S. (R&D Center, LG Philips LCD Inc.)
  • Published : 2006.03.31

Abstract

Single-electron transistor (SET)-based logic cells and SET/FET hybrid integrated circuits have been fabricated on SOI chips. The input-output voltage transfer characteristic of the SET-based complementary logic cell shows an inverting behavior where the output voltage gain is estimated to be about 1.2 at 4.2K. The SET/FET output driver, consisting of one SET and three FETs, yields a high voltage gain of 13 and power amplification with a wide-range output window for driving next circuit. Finally, the SET/FET literal gate for a multi-valued logic cell, comprising of an SET, an FET and a constant-current load, displays a periodic voltage output of high/low level multiple switching with a swing as high as 200mV. The multiple switching functionality of all the fabricated logic circuits could be enhanced by utilizing a side gate incorporated to each SET component to enable the phase control of Coulomb oscillations, which is one of the unique characteristics of the SET-based logic circuits.

Keywords

References

  1. R. H. Chen, A. N. Korotkov and K. K. Likarev, 'Single-electron transistor logic,' Appl. Phys. Lett. vol.68, pp.1954-1956, Apr. 1996 https://doi.org/10.1063/1.115637
  2. Y. Takahashi, A. Fujiwara, K. Yamazaki, H. Namatsu, K. Kurihara and K. Murase, 'Multigate single-electron transistors and their application to an exclusive-OR gate,' Appl. Phys. Lett. vol.76, pp.637-639, Jan. 2000 https://doi.org/10.1063/1.125843
  3. C. P. Heij, D. C. Dixon, P. Hadley and J. E. Mooij, 'Negative differential resistance due to single-electron switching,' Appl. Phys. Lett. vol.74, pp. 1042-1044, Feb. 1999 https://doi.org/10.1063/1.123449
  4. K. Uchida, J. Koga, R. Ohba and A. Toriumi, 'Room-temperature operation of multifunctional single-electron transistor logic,' IEDM, 2001, pp.863-865 https://doi.org/10.1109/IEDM.2000.904454
  5. H. Mizuta, H. Muller, K. Tsukagoshi, D. Williams, Z. Durrant, A. Irvine, G. Evans, S. Amakawa, K. Nakazato and H. Ahmed, 'Nanoscale Coulomb blockade memory and logic devices,' Nanotechnol. vol.12, pp.155-159, June 2001 https://doi.org/10.1088/0957-4484/12/2/317
  6. H. Inokawa, A. Fujiwara and Y. Takahashi, 'A multiple-valued logic with merged single-electron and MOS transistors,' IEDM, 2001, pp.7.2.1-7.2.4 https://doi.org/10.1109/IEDM.2001.979453
  7. K.S. Park, S.J. Kim, I.B. Paik, W.H. Lee, J.S. Kang, Y.B. Jo, S.D. Lee, C.K. Lee, J.B. Choi, J.H. Kim, K.H. Park, W.J. Cho, M.G. Jang, S.J. Lee, 'SOI single-electron transistor with low RC delay for logic cells and SET/FET ICs,' IEEE Trans. Nanotechnology, vol.4, no.2, pp. 242-248, Mar. 2005 https://doi.org/10.1109/TNANO.2004.837857
  8. Y. Ono and Y. Takahashi, K. Yamazaki, M. Nagase, H. Namatsu, K. Kurihara and K. Murase, 'Fabrication method for IC-oriented Si singleelectron transistors,' IEEE Trans. Electron Devices, vol.47, pp.147-153, Jan. 2000 https://doi.org/10.1109/16.817580
  9. S. Horiguchi, M. Nagase, K. Shiraishi, H. Kageshima, Y. Takahashi and K. Murase, 'Mechanism of Potential Profile Formation in Silicon Single-Electron Transistors Fabricated Using Pattern-Dependent Oxidation,' Jpn. J. Appl. Phys. vol.40, pp.L29-L32. Jan. 2001 https://doi.org/10.1143/JJAP.40.L29
  10. K.S. Park, S.J. Kim, I.B. Paik, W.H. Lee, J.S. Kang, Y.B. Jo, S.D. Lee, C.K. Lee, J.H. Kim, and J.B. Choi, THz ultra-fast single-electron transistors fabricated on SOI structures by PADOX,' Semicond. Sci. Technol., vol.19, L39-41, 2004 https://doi.org/10.1088/0268-1242/19/3/L09
  11. B. T. Lee, J. W. Park, K. S. Park, C. H. Lee, S. W. Paik, S. D. Lee, Jung B. Choi, K. S. Min, J. S. Park, S. Y. Hahn, T. J. Park, H. Shin, S. C. Hong, Kwyro Lee, H. C. Kwon, S. I. Park, K. T. Kim and K-H Yoo, 'Fabrication of a dual-gate-controlled Coulomb blockade transistor based on a silicon-on-insulator structure,' Semicond. Sci. Technol. Vol.13, pp. 1463-1467, Aug. 1998 https://doi.org/10.1088/0268-1242/13/12/024
  12. J. W. Park, K. S. Park, B. T. Lee, C. H. Lee, S. D. Lee, Jung B. Choi, K-H. Yoo, J. Kim, S. C. Oh, S. I. Park, K. T. Kim and J. J. Kim, 'Enhancement of Coulomb blockade and tunability by multidot coupling in a silicon-on-insulator-based singleelectron transistor,' Appl. Phys. Lett. vol.75, pp. 566-568. Jul. 1999 https://doi.org/10.1063/1.124443