• Title/Summary/Keyword: LMI(Linear Matrix Inequality)

Search Result 351, Processing Time 0.023 seconds

LMI-based $H_\infty$ Robust Control of Asymmetric Rotor-magnetic Bearing System (비대칭 로터-자기베어링 시스템의 LMI에 기초한 $H_\infty$ 강건제어)

  • 강호식;송오섭
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.3
    • /
    • pp.172-179
    • /
    • 2003
  • Linear matrix Inequality based $H_\infty$ robust controller is designed to control the motion of a 4-axis unbalanced rigid asymmetric rotor supported and controlled by two active magnetic bearings in this paper. To this end, the equations of motion of the system are derived via Hamilton's variational principle and transformed to a state-space form for the standard $H_\infty$ control problem. LMI-based controller, which does not require additional assumptions beyond the usual stabilizability and detectability assumptions, is designed based upon the pole place weighting function and loopshaping technique. The obtained results are compared with those reported in the available literature and the efficiency of the proposed LMI-based $H_\infty$ control is revealed.

ROBUST OUTPUT FEEDBACK $H\infty$ CONTROL FOR UNCERTAIN DELAYED SINGULAR SYSTEMS

  • Kim, Jong-Hae;Lim, Jong-Seul
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.513-522
    • /
    • 2006
  • This paper considers a robust output feedback $H\infty$ controller design method for singular systems with time-varying delay in state and parameter uncertainty in system matrix by an LMI approach and observer based technique, which can be solved efficiently by convex optimization. The sufficient condition for the existence of controller and the controller design method are presented by strict LMI(linear matrix inequality) approach. Since the obtained condition can be expressed as an LMI form, all variables including feedback gain and observer gain can be calculated simultaneously by Schur complement and changes of variables.

Design of T-S Fuzzy-Model-Based Controller for Control of Autonomous Underwater Vehicles (무인 잠수정의 심도 제어를 위한 T-S 퍼지 모델 기반 제어기 설계)

  • Jun, Sung-Woo;Kim, Do-Wan;Lee, Ho-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.302-306
    • /
    • 2011
  • This paper presents Takagi-Sugeno (T-S) fuzzy-model-based controller for depth control of autonomous underwater vehicles(AUVs). Through sector nonlinearity methodology, The nonlinear AUV is represented by T-S fuzzy model. By using the Lyapunov function, the design condition of controller is derived to guarantee the performance of depth control in the format of linear matrix inequality (LMI). An example is provided to illustrate the effectiveness of the proposed methodology.

Robust Stability of Uncertain Linear Large-scale Systems with Time-delay via LMI Approach (LMI 기법을 이용한 시간지연 대규모 불확정성 선형 시스템의 강인 안정성)

  • Lee, Hee-Song;Kim, Jin-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1287-1292
    • /
    • 1999
  • In large-scale systems, we frequently encounter the time-delay and the uncertainty, and these should be considered in the design of controller because these are the source of the degradation of the system performance and instability of system. In this paper, we consider the robust stability of the linear large scale systems with the uncertainties and the time-delays. The considered uncertainties are both structured uncertainty and the unstructured uncertainty. Also, the considered time-delays are time-varying having finite time derivative limits. Based on the Lyapunov theorem and the linear matrix inequality(LMI) technique, we present two sufficient conditions that guarantee the robust stability of the system. The conditions are expressed as the LMI forms which can be easily checked their feasibility by using the well-known LMI control toolbox. Finally, we show by two examples that our results are less conservative than the previous results.

  • PDF

Design of a Static Output Feedback Stabilization Controller by Solving a Rank-constrained LMI Problem (선형행렬부등식을 이용한 정적출력궤환 제어기 설계)

  • Kim Seogj-Joo;Kwon Soonman;Kim Chung-Kyung;Moon Young-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.11
    • /
    • pp.747-752
    • /
    • 2004
  • This paper presents an iterative linear matrix inequality (LMI) approach to the design of a static output feedback (SOF) stabilization controller. A linear penalty function is incorporated into the objective function for the non-convex rank constraint so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. Hence, the overall procedure results in solving a series of semidefinite programs (SDPs). With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Extensive numerical experiments are Deformed to illustrate the proposed algorithm.

Design of a Fixed-Structure H$_{\infty}$ Power System Stabilizer (고정 구조를 가지는$H_\infty$ 전력계통 안정화 장치 설계)

  • Kim Seog-Joo;Lee Jong-Moo;Kwon Soonman;Moon Young-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.12
    • /
    • pp.655-660
    • /
    • 2004
  • This paper deals with the design of a fixed-structure $H_\infty$ power system stabilizer (PSS) by using an iterative linear matrix inequality (LMI) method. The fixed-structure $H_\infty$ controller is represented in terms of LMIs with a rank condition. To solve the non-convex rank-constrained LMI problem, a linear penalty function is incorporated into the objective function so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Numerical experiments show the practical applicability of the proposed algorithm.

Design of Robust Controller for Uncertain Large-scale Systems with Time-delays (시간지연을 갖는 불확정성 대규모 시스템의 강인 제어기 설계)

  • Lee, Hui-Song;Kim, Jin-Hun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • In this paper, we consider to robust controller design problem for the linear large scale systems with the uncertainties and the time-delays. The considered time-delays are that exist in the state and the input of the subsystems and the interconnected subsystems. And the considered uncertainties are two general types that exist in the system, input and interconnected matrices. Based on the linear matrix inequality(LMI) and Lyapunov theorem, we present sufficient conditions for the existence of a controller that guarantees the asymptotic stability of systems regardless of the uncertainties and the time-delays. Also, the controller can be easily obtained by checking the feasibility of the LMI's. Finally, we show the usefulness of our results by an example.

  • PDF

An LMI-based Decentralized Sliding Mode Static Output Feedback Control Design Method for Large Scale Systems (대규모 시스템을 위한 LMI기반 비집중화 슬라이딩 모드 정적 출력 궤환 제어기 설계)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.381-384
    • /
    • 2008
  • In this paper, we consider the problem of designing decentralized sliding mode static output feedback control laws for a class of large scale systems with mismatched uncertainties. We derive a sufficient condition for the existence of a linear switching surface in terms of constrained linear matrix inequalities(LMIs), and we parameterize the linear switching surfaces in terms of the solution matrices to the given constrained LMI existence conditions. We also give an LMI-based algorithm for designing decentralized switching feedback control laws. Finally, we give a design example in order to show the effectiveness of our method.

A Study of Robust Vibration Control for a Multi-Layer Structure (다층상구조물의 강인 진동제어에 관한 연구)

  • Kim, Chang-Hwa;Jung, Byung-Gun;Jung, Hae-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1212-1219
    • /
    • 2009
  • In this paper, a state feedback gain controller using linear matrix inequality(LMI) for the multi-objective synthesis is designed, in the multi-layer structure with integral type servo system. The design objectives include $H_{\infty}$ performance, asymptotic disturbance rejection, time-domain constraints, on the closed-loop pole location. The results of computer simulation show the validity of the designed controller.

Robust Waypoint Tracking of Large Diameter Unmanned Underwater Vehicles with Uncertain Hydrodynamic Coefficients (불확실 유체 역학 계수를 가진 대형급 무인잠수정의 강인 경로점 추적)

  • Kim, Do Wan;Park, Jeong-Hoon;Park, Ho-Gyu;Kim, Tae-Yeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.409-415
    • /
    • 2017
  • This paper addresses on an linear matrix inequality (LMI) formulation of the robust waypoint tracking problem of large diameter unmanned underwater vehicles (LDUUVs) in the horizontal plane. The interested design issue can be reformed as the robust asymptotic stabilization of the provided error dynamics with respect to the desired yaw angle, surge speed and attitude. Sufficient conditions for its robust asymptotic stabilizability against the hydrodynamic uncertainties are derived in the format of LMI. An example is provided to testify the validity of the proposed theoretical claims.