• Title/Summary/Keyword: LIM Kinase

Search Result 236, Processing Time 0.023 seconds

Interruption of Helicobacter pylori-Induced NLRP3 Inflammasome Activation by Chalcone Derivatives

  • Choi, Hye Ri;Lim, Hyun;Lee, Ju Hee;Park, Haeil;Kim, Hyun Pyo
    • Biomolecules & Therapeutics
    • /
    • v.29 no.4
    • /
    • pp.410-418
    • /
    • 2021
  • Helicobacter pylori causes chronic gastritis through cag pathogenicity island (cagPAI), vacuolating cytotoxin A (VacA), lipopolysaccharides (LPS), and flagellin as pathogen-related molecular patterns (PAMPs), which, in combination with the pattern recognition receptors (PRRs) of host cells promotes the expression and secretion of inflammation-causing cytokines and activates innate immune responses such as inflammasomes. To identify useful compounds against H. pylori-associated gastric disorders, the effect of chalcone derivatives to activate the nucleotide-binding oligomerization domain (NOD)-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome was examined in an H. pylori-infected human monocytic THP-1 cell line in this study. Among the five synthetic structurally-related chalcone derivatives examined, 2'-hydroxy-4',6'-dimethoxychalcone (8) and 2'-hydroxy-3,4,5-trimethoxychalcone (12) strongly blocked the NLRP3 inflammasome in H. pylori-infected THP-1 cells. At 10 μM, these compounds inhibited the production of active IL-1β, IL-18, and caspase-1, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) oligomerization, but did not affect the expression levels of NLRP3, ASC, and pro-caspase-1. The interruption of NLRP3 inflammasome activation by these compounds was found to be mediated via the inhibition of the interleukin-1 receptor-associated kinase 4 (IRAK4)/IκBα/NF-κB signaling pathway. These compounds also inhibited caspase-4 production associated with non-canonical NLRP3 inflammasome activation. These results show for the first time that certain chalcones could interrupt the activation of the NLRP3 inflammasome in H. pylori-infected THP-1 cells. Therefore, these chalcones may be helpful in alleviating H. pylori-related inflammatory disorders including chronic gastritis.

Mechanistic insight into the progressive retinal atrophy disease in dogs via pathway-based genome-wide association analysis

  • Sheet, Sunirmal;Krishnamoorthy, Srikanth;Park, Woncheoul;Lim, Dajeong;Park, Jong-Eun;Ko, Minjeong;Choi, Bong-Hwan
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.765-776
    • /
    • 2020
  • The retinal degenerative disease, progressive retinal atrophy (PRA) is a major reason of vision impairment in canine population. Canine PRA signifies an inherently dissimilar category of retinal dystrophies which has solid resemblances to human retinis pigmentosa. Even though much is known about the biology of PRA, the knowledge about the intricate connection among genetic loci, genes and pathways associated to this disease in dogs are still remain unknown. Therefore, we have performed a genome wide association study (GWAS) to identify susceptibility single nucleotide polymorphisms (SNPs) of PRA. The GWAS was performed using a case-control based association analysis method on PRA dataset of 129 dogs and 135,553 markers. Further, the gene-set and pathway analysis were conducted in this study. A total of 1,114 markers associations with PRA trait at p < 0.01 were extracted and mapped to 640 unique genes, and then selected significant (p < 0.05) enriched 35 gene ontology (GO) terms and 5 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways contain these genes. In particular, apoptosis process, homophilic cell adhesion, calcium ion binding, and endoplasmic reticulum GO terms as well as pathways related to focal adhesion, cyclic guanosine monophosphate)-protein kinase G signaling, and axon guidance were more likely associated to the PRA disease in dogs. These data could provide new insight for further research on identification of potential genes and causative pathways for PRA in dogs.

Effects of branched-chain amino acid supplement on knee peak torque and indicators of muscle damage following isokinetic exercise-induced delayed onset muscle soreness

  • Lim, In-Soo
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.4
    • /
    • pp.28-33
    • /
    • 2020
  • [Purpose] This study aimed to investigate the effects of branched-chain amino acid (BCAA) supplement on delayed onset muscle soreness (DOMS) by analyzing the maximum muscle strength and indicators of muscle damage. [Methods] Twelve men with majors in physical education were assigned to the BCAA group and placebo group in a double-blinded design, and repeated measurements were conducted. DOMS was induced with an isokinetic exercise. Following BCAA administration, the changes in the knee extension peak torque, flexion peak torque, aspartate aminotransferase (AST), creatine kinase (CK), and lactate dehydrogenase (LDH) concentrations were analyzed. The maximum knee muscle strength was measured at the baseline (pre-D0) following BCAA administration for 5 days before exercise (-D5, -4D, -3D, -2D, -1D). In contrast, the post-treatment measurements (D3) were recorded after BCAA administration for 3 days (post-D0, D1, D2). Blood samples were obtained before (pre-D0), immediately after (post-D0), 24 h (D1), 48 h (D2), and 72 h (D3) after the exercise to analyze the indicators of muscle strength. BCAA was administered twice daily for 8 days (5 days and 3 days before inducing DOMS and during the experimental period, respectively). [Results] There was no difference in the flexion peak torque between the groups. However, the BCAA group showed a significantly higher extension peak torque at D3 (second isokinetic exercise), compared to the placebo group (p<.05). There was no difference in AST changes between the groups. Nonetheless, the CK and LDH were significantly reduced in the BCAA group, compared to the placebo group. There was no correlation between the extension peak torque and flexion peak torque. However, the CK and LDH increased proportionately in DOMS. Moreover, their concentrations significantly increased with a decreasing peak torque (p<.01). [Conclusion] An exercise-induced DOMS results in a decrease in the peak torque and a proportional increase in the CK and LDH concentrations. Moreover, the administration of BCAA inhibits the reduction of the extension peak torque and elevation of CK and LDH concentrations. Therefore, BCAA might be administered as a supplement to maintain the muscle strength and prevent muscle damage during vigorous exercises that may induce DOMS in sports settings.

Anti-inflammatory effect of Sihosogan-tang via inhibition of NF-κB and MAPK cascade (NF-κB와 MAPK억제를 통한 시호소간탕(柴胡疏肝湯)의 항염증효과)

  • Hyo Jeong Jin;Sang Mi Park;Ye Lim Kim;Sung Hui Byun;Sang Chan Kim
    • Herbal Formula Science
    • /
    • v.31 no.2
    • /
    • pp.99-109
    • /
    • 2023
  • Objectives : Sihosogan-tang (SST) is one of the traditional herbal formula and also one of the Korean medical insurance medicines. It commonly used in the treatment of hepatitis, chronic gastritis, intercostal neuralgia, pleurisy, and depression in East Asia. In the present study, we have demonstrated the anti-inflammatory effects of SST in macrophage cell line. Methods : To investigate mechanism of the anti-inflammatory effect of SST, we examined the productions of nitric oxide (NO) and pro-inflammatory cytokines, and the expressions of inducible NO synthase (iNOS), nuclear factor-κ B (NF-κB) and mitogen-activated protein kinase (MAPK) on RAW 264.7 cells activated by LPS. Results : SST significantly inhibited the expression of iNOS increased by LPS, and also significantly inhibited the production of NO. In addition, SST significantly inhibited pro-inflammatory cytokines such as TNF- α and interleukines. SST inhibited the expression of NF-κB and MAPK activation. Conclusions : These results suggest that SST ameliorates inflammatory response in LPS-activated RAW 264.7 cells through the inhibition of the NF-κB and MAPK pathway. Therefore, this study supplies objective evidence for the anti-inflammatory effect of SST.

Treadmill exercise enhances motor coordination and ameliorates Purkinje cell loss through inhibition on astrocyte activation in the cerebellum of methimazole-induced hypothyroidism rat pups

  • Shin, Mal-Soon;Kim, Bo-Kyun;Lee, Shin-Ho;Kim, Tae-Soo;Heo, Yu-Mi;Choi, Jun-Ho;Kim, Chang-Ju;Lim, Baek-Vin
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.2
    • /
    • pp.73-84
    • /
    • 2012
  • Thyroid hormones are important for the development of the brain including the cerebellum. In the present study, we investigated the effect of treadmill exercise on the survival of Purkinje neurons and the activation of astrocytes in the cerebellar vermis of hypothyroidism-induced rat pups. On the day of perinatal 14, pregnant rats were divided into two groups (n = 5 in each group): the pregnant control group and the pregnantmethimazole (MMI)-treated group. For the induction of hypothyroidism in the rat pups, MMI was added to the drinking water (0.02% wt/vol), from the day of perinatal 14 to postnatal 49. After delivery, male rat pups born from the pregnant control group were assigned to the control group. Male rat pups born from the MMI-treated group were divided into the hypothyroidism-induction group, the hypothyroidism-induction with treadmill exercise group, and the hypothyroidism-induction with thyroxine (T4) treatment group (n = 10 in each group). The rat pups in the exercise group were forced to run on a treadmill for 30 min once a day for 4 weeks, starting on postnatal day 22. In the hypothyroidism-induced rat pups, motor coordination was reduced and Purkinje cell death and reactive astrocytes in the cerebellar vermis were increased. Treadmill exercise enhanced motor coordination, increased the survival of Purkinje neurons, down-regulated reactive astrocytes, and enhanced brain-derived neurotrophic factor (BDNF) and receptor tyrosine kinase B (TrkB) expressions in the hypothyroidism-induced rat pups. These results suggest that treadmill exercise has beneficial effects in terms of protecting against thyroid dysfunction by increasing T3 and T4 and the related protein, BDNF, as well as TrkB, inhibition on astrocyte activation and the reduction of Purkinje cell loss regarding the cerebellum in hypothyroidism rat pups.

Analysis of Major Constituents of an Ethanol Extract of Platycodon Grandiflorum Leaves and Protective Effects on Inflammation in Murine Macrophage and Human Lung Carcinoma Cells (도라지 잎 에탄올 추출물의 주요 성분 분석 및 마우스 대식세포와 인체 폐암세포에서 항염효과)

  • Jung Min Lee;Byeong Jun Bae;Jee-Lim Choi;Young-Shin Chung
    • The Korean Journal of Food And Nutrition
    • /
    • v.37 no.2
    • /
    • pp.110-122
    • /
    • 2024
  • This study investigated major constituents and anti-inflammatory effects of an ethanol extract of Platycodon grandiflorum leaves. Through HPLC analysis, chlorogenic acid and luteolin-7-O-glucoside were identified as predominant constituents in the ethanol extract. Their anti-inflammatory effects were evaluated using murine macrophage (RAW 264.7 cells) and human lung carcinoma cells (NCI-H292 & A549). The ethanol extract significantly (p<0.01) inhibited the production of nitrite, interleukin-6 (IL-6), and prostaglandin E2 (PGE2) induced by lipopolysaccharide (LPS) in RAW 264.7 cells. Furthermore, the ethanol extract suppressed the expression of cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS) proteins in RAW 264.7 cells stimulated with LPS. In NCI-H292 and A549 cells, treatment with the ethanol extract significantly (p<0.05) decreased levels of pro-inflammatory cytokines IL-6 and IL-8 induced by IL-1β. The phosphorylation of ERK rather than JNK in the mitogen-activated protein kinase signaling pathway was observed to be a more important mediator in the down-regulation of pro-inflammatory cytokines in NCI-H292 cells. These findings suggest that the ethanol extract of Platycodon grandiflorum leaves containing luteolin-7-O-glucoside exhibits promising anti-inflammatory properties.

Cytokinin signaling promotes root secondary growth and bud formation in Panax ginseng

  • Kyoung Rok Geem;Yookyung Lim;Jeongeui Hong;Wonsil Bae;Jinsu Lee;Soeun Han;Jinsu Gil;Hyunwoo Cho;Hojin Ryu
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.220-228
    • /
    • 2024
  • Background: Panax ginseng, one of the valuable perennial medicinal plants, stores numerous pharmacological substrates in its storage roots. Given its perennial growth habit, organ regeneration occurs each year, and cambium stem cell activity is necessary for secondary growth and storage root formation. Cytokinin (CK) is a phytohormone involved in the maintenance of meristematic cells for the development of storage organs; however, its physiological role in storage-root secondary growth remains unknown. Methods: Exogenous CK was repeatedly applied to P. ginseng, and morphological and histological changes were observed. RNA-seq analysis was used to elucidate the transcriptional network of CK that regulates P. ginseng growth and development. The HISTIDINE KINASE 3 (PgHK3) and RESPONSE REGULATOR 2 (PgRR2) genes were cloned in P. ginseng and functionally analyzed in Arabidopsis as a two-component system involved in CK signaling. Results: Phenotypic and histological analyses showed that CK increased cambium activity and dormant axillary bud formation in P. ginseng, thus promoting storage-root secondary growth and bud formation. The evolutionarily conserved two-component signaling pathways in P. ginseng were sufficient to restore CK signaling in the Arabidopsis ahk2/3 double mutant and rescue its growth defects. Finally, RNA-seq analysis of CK-treated P. ginseng roots revealed that plant-type cell wall biogenesis-related genes are tightly connected with mitotic cell division, cytokinesis, and auxin signaling to regulate CK-mediated P. ginseng development. Conclusion: Overall, we identified the CK signaling-related two-component systems and their physiological role in P. ginseng. This scientific information has the potential to significantly improve the field-cultivation and biotechnology-based breeding of ginseng.

The Effect of Yaksun Recipe with Korean Ginseng on Exercise Practice Ability and Fatigue Variable Factor. (인삼을 함유한 약선레시피가 운동수행능력 및 항피로에 미치는 영향)

  • Mi-Lim Kim;Soon-Ae Park;Min Ju Kim;Mi-Rae Shin;Seong-Soo Roh;Hae-Jin Park
    • The Korea Journal of Herbology
    • /
    • v.39 no.3
    • /
    • pp.97-105
    • /
    • 2024
  • Objective : This study examined the effects of yaksun recipe on the anti-fatigue and endurance enhancement properties in the forced swimming test (FST). Methods : The treatment groups were divided randomly into three groups: water-treated FST (control), 200 mg/kg of red ginseng-treated FST (RG200), 200 mg/kg of water extract of yaksun recipe-treated FST (YS200). After FST, an autopsy was performed, and the tissue and serum were collected. Results : The swimming exhaustion time in the RG200 and YG200 groups were significantly increased compared to the control group. The YG200 group fatigue indicators, D-Lactate, LDH(lactate dehydrogenase), creatine kinase, and ammonia content, significantly decreased compared to the control group. In addition, liver glycogen content significantly increased in the YG200 and tended to increase in RG200. Likewise, the glucose contents were significantly increased compared to the control group. The muscle damage indicators GPT (glutamic pyruvic transaminase) and BUN (blood urea nitrogen), a protein metabolite, in the YG200 group significantly decreased compared to the control group. Furthermore the concentration of liver lipid peroxidation, MDA(malondialdehyde) levels significantly decreased in the RG200 and YG200 compared to control group. Conclusions : These results suggest that YG200 can increase the endurance exercise capacity by decreasing the fatigue indicators, saving glycogen, and elevating the antioxidant defense system.

Immunotherapy for Non-small Cell Lung Cancer: Current Landscape and Future Perspectives

  • Sun Min Lim;Min Hee Hong;Hye Ryun Kim
    • IMMUNE NETWORK
    • /
    • v.20 no.1
    • /
    • pp.10.1-10.14
    • /
    • 2020
  • Immune checkpoint inhibitors (ICIs) have shown remarkable benefit in the treatment of patients with non-small-cell lung cancer (NSCLC) and have emerged as an effective treatment option even in the first-line setting. ICIs can block inhibitory pathways that restrain the immune response against cancer, restoring and sustaining antitumor immunity. Currently, there are 4 PD-1/PD-L1 blocking agents available in clinics, and immunotherapy-based regimen alone or in combination with chemotherapy is now preferred option. Combination trials assessing combination of ICIs with chemotherapy, targeted therapy and other immunotherapy are ongoing. Controversies remain regarding the use of ICIs in targetable oncogene-addicted subpopulations, but their initial treatment recommendations remained unchanged, with specific tyrosine kinase inhibitors as the choice. For the majority of patients without targetable driver oncogenes, deciding between therapeutic options can be difficult due to lack of direct cross-comparison studies. There are continuous efforts to find predictive biomarkers to find those who respond better to ICIs. PD-L1 protein expressions by immunohistochemistry and tumor mutational burden have emerged as most well-validated biomarkers in multiple clinical trials. However, there still is a need to improve patient selection, and to establish the most effective concurrent or sequential combination therapies in different NSCLC clinical settings. In this review, we will introduce currently used ICIs in NSCLC and analyze most recent trials, and finally discuss how, when and for whom ICIs can be used to provide promising avenues for lung cancer treatment.

A Comparative Study on the Efficacy and Mechanism of Improving Glucose Uptake of Cannabis Root and Stem Extracts (대마 뿌리 및 줄기 추출물의 포도당 흡수 개선 효과 및 기전에 대한 비교 연구)

  • Hye-Lin Jin;Ga-Ram Yu;Hyuck Kim;Kiu-Hyung Cho;Ki-Hyun Kim;Dong-Woo Lim
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.23 no.2
    • /
    • pp.51-59
    • /
    • 2023
  • Objectives: Despite the pharmacological potential of the roots and stems of hemp based on literatures, active research has not been conducted for a long time. Comparative experiments were conducted on antioxidant and anti-inflammatory effects and improvement of glucose uptake using Cannabis root and stem extracts. Methods: Antioxidant contents in Cannabis root and stem extracts were examined with total phenolic, tannin, flavonoid assay. Anti-inflammatory properties were tested in lipopolysaccharides-treated RAW264.7 cells. Efficacy of Cannabis root and stem extracts on glucose uptake was investigated using fluorescent glucose analog (2-NBDG) in palmitate-treated HepG2 cells. The mechanism of action on metabolism was examined by western blot. Results: Antioxidant and anti-inflammatory efficacy were greater in stem extracts, but improvements in glucose uptake performed under various conditions were found to be greater in root extracts. It is assumed that Cannabis root extracts exhibited an improvement in glucose uptake through mechanisms such as AMP-activated protein kinase activation, not depending on general antioxidant and anti-inflammatory effects. Conclusions: Further research is needed on the mechanisms and substances that exhibit the anti-diabetic effects of Cannabis roots and stems.