• Title/Summary/Keyword: LIDAR sensor

Search Result 108, Processing Time 0.023 seconds

Extraction of 3D Building Information using Shadow Analysis from Single High Resolution Satellite Images (단일 고해상도 위성영상으로부터 그림자를 이용한 3차원 건물정보 추출)

  • Lee, Tae-Yoon;Lim, Young-Jae;Kim, Tae-Jung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.2 s.36
    • /
    • pp.3-13
    • /
    • 2006
  • Extraction of man-made objects from high resolution satellite images has been studied by many researchers. In order to reconstruct accurate 3D building structures most of previous approaches assumed 3D information obtained by stereo analysis. For this, they need the process of sensor modeling, etc. We argue that a single image itself contains many clues of 3D information. The algorithm we propose projects virtual shadow on the image. When the shadow matches against the actual shadow, the height of a building can be determined. If the height of a building is determined, the algorithm draws vertical lines of sides of the building onto the building in the image. Then the roof boundary moves along vertical lines and the footprint of the building is extracted. The algorithm proposed can use the shadow cast onto the ground surface and onto facades of another building. This study compared the building heights determined by the algorithm proposed and those calculated by stereo analysis. As the results of verification, root mean square errors of building heights were about 1.5m.

  • PDF

LiDAR Static Obstacle Map based Position Correction Algorithm for Urban Autonomous Driving (도심 자율주행을 위한 라이다 정지 장애물 지도 기반 위치 보정 알고리즘)

  • Noh, Hanseok;Lee, Hyunsung;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.39-44
    • /
    • 2022
  • This paper presents LiDAR static obstacle map based vehicle position correction algorithm for urban autonomous driving. Real Time Kinematic (RTK) GPS is commonly used in highway automated vehicle systems. For urban automated vehicle systems, RTK GPS have some trouble in shaded area. Therefore, this paper represents a method to estimate the position of the host vehicle using AVM camera, front camera, LiDAR and low-cost GPS based on Extended Kalman Filter (EKF). Static obstacle map (STOM) is constructed only with static object based on Bayesian rule. To run the algorithm, HD map and Static obstacle reference map (STORM) must be prepared in advance. STORM is constructed by accumulating and voxelizing the static obstacle map (STOM). The algorithm consists of three main process. The first process is to acquire sensor data from low-cost GPS, AVM camera, front camera, and LiDAR. Second, low-cost GPS data is used to define initial point. Third, AVM camera, front camera, LiDAR point cloud matching to HD map and STORM is conducted using Normal Distribution Transformation (NDT) method. Third, position of the host vehicle position is corrected based on the Extended Kalman Filter (EKF).The proposed algorithm is implemented in the Linux Robot Operating System (ROS) environment and showed better performance than only lane-detection algorithm. It is expected to be more robust and accurate than raw lidar point cloud matching algorithm in autonomous driving.

Monitoring of the Natural Terrain Behavior Using the Terrestrial LiDAR (지상라이다 자료를 이용한 자연사면의 변위 모니터링)

  • Park, Jae Kook;Lee, Sang Yun;Yang, In Tae;Kim, Dong Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2D
    • /
    • pp.191-198
    • /
    • 2010
  • The displacement of slope is a key factor in predicting the risk of a landslide. Therefore, the slope displacement should be continuously observed with high accuracy. Recently, high-tech equipment such as optical fiber sensor, GPS, total station and measuring instrument have been used. However, such equipment is poorly used in fields due to economics, environment, convenience and management. Because of this, development of substantial observational techniques for varied slope observation and field applications is needed. This study analyzed the possibility of terrestrial LiDAR for slope monitoring and suggested it as information-obtaining technique for slope investigation and management. For that, this study evaluated the monitoring accuracy of terrestrial LiDAR and performed GRID analysis to read the displacement area with the naked eye. In addition, it suggested a methodology for slope monitoring.

A Study on the AI-based Fish Classification and Weight Estimation System (인공지능 기반 어류 분류 및 무게 추정 시스템에 관한 연구)

  • Go, Jun-Hyeok;Oh, dong-Hyub;Lee, Ji-won;Im, Tae-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.229-232
    • /
    • 2022
  • Recently, production of offshore fisheries in Korea has been decreasing. Since production of offshore fisheries in 2016 fell below 1 million tons for the first time in 44 years, it has not recovered and has been decreasing. In order to cope with such a decrease in fishery resources, the TAC (total allowable catch) system is implemented internationally for fisheries resource management. Since 1999, South Korea has introduced the TAC system to perform resource management. In this paper, we propose an artificial intelligence-based fish classification and weight estimation system that can be used to investigate fishery resources of land observers essential for the implementation of the TAC system. The system consists of an app and a cloud server that automatically measures the body size and height of fish and takes photos using a terminal equipped with a lidar sensor. In the cloud server, fish classification is performed using a CNN-based efficientnet model and the weight of fish is predicted using automatically measured body length and body height information. Using this system, it is possible to improve the existing method in which the land observer manually writes after measuring the tape measure and weight in the stomach market.

  • PDF

The Technique of Human tracking using ultrasonic sensor for Human Tracking of Cooperation robot based Mobile Platform (모바일 플랫폼 기반 협동로봇의 사용자 추종을 위한 초음파 센서 활용 기법)

  • Yum, Seung-Ho;Eom, Su-Hong;Lee, Eung-Hyuk
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.638-648
    • /
    • 2020
  • Currently, the method of user-follwoing in intelligent cooperative robots usually based in vision system and using Lidar is common and have excellent performance. But in the closed space of Corona 19, which spread worldwide in 2020, robots for cooperation with medical staff were insignificant. This is because Medical staff are all wearing protective clothing to prevent virus infection, which is not easy to apply with existing research techniques. Therefore, in order to solve these problems in this paper, the ultrasonic sensor is separated from the transmitting and receiving parts, and based on this, this paper propose that estimating the user's position and can actively follow and cooperate with people. However, the ultrasonic sensors were partially applied by improving the Median filter in order to reduce the error caused by the short circuit in communication between hard reflection and the number of light reflections, and the operation technology was improved by applying the curvature trajectory for smooth operation in a small area. Median filter reduced the error of degree and distance by 70%, vehicle running stability was verified through the training course such as 'S' and '8' in the result.

Study on Structure Visual Inspection Technology using Drones and Image Analysis Techniques (드론과 이미지 분석기법을 활용한 구조물 외관점검 기술 연구)

  • Kim, Jong-Woo;Jung, Young-Woo;Rhim, Hong-Chul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.6
    • /
    • pp.545-557
    • /
    • 2017
  • The study is about the efficient alternative to concrete surface in the field of visual inspection technology for deteriorated infrastructure. By combining industrial drones and deep learning based image analysis techniques with traditional visual inspection and research, we tried to reduce manpowers, time requirements and costs, and to overcome the height and dome structures. On board device mounted on drones is consisting of a high resolution camera for detecting cracks of more than 0.3 mm, a lidar sensor and a embeded image processor module. It was mounted on an industrial drones, took sample images of damage from the site specimen through automatic flight navigation. In addition, the damege parts of the site specimen was used to measure not only the width and length of cracks but white rust also, and tried up compare them with the final image analysis detected results. Using the image analysis techniques, the damages of 54ea sample images were analyzed by the segmentation - feature extraction - decision making process, and extracted the analysis parameters using supervised mode of the deep learning platform. The image analysis of newly added non-supervised 60ea image samples was performed based on the extracted parameters. The result presented in 90.5 % of the damage detection rate.

A Study on Construction & Management of Urban Spatial Information Based on Digital Twin (디지털트윈 기반의 도시 공간정보 구축 및 관리에 관한 연구)

  • Lih, BongJoo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.53 no.1
    • /
    • pp.47-63
    • /
    • 2023
  • The Seoul Metropolitan Government is building and operating digital twin-based urban spatial information to solve various problems in the city and provide public services. Two essential factors to ensure the stable utilization of spatial information for the implementation of such a digital twin city are the latest and quality of the data. However, it is time-consuming and costly to maintain continuous updating of high-quality urban spatial information. To overcome this problem, we studied efficient urban spatial information construction technology and the operation, management, and update procedures of construction data. First, we demonstrated and applied automatic 3D building construction technology centered on point clouds using the latest hybrid sensors, confirmed that it is possible to automatically construct high-quality building models using high-density airborne lidar results, and established an efficient data management plan. By applying differentiated production methods by region, supporting detection of urban change areas through Seoul spatial feature identifiers, and producing international standard data by level, we strengthened the utilization of urban spatial information. We believe that this study can serve as a good precedent for local governments and related organizations that are considering activating urban spatial information based on digital twins, and we expect that discussions on the construction and management of spatial information as infrastructure information for city-level digital twin implementation will continue.

Comparison of Wind Vectors Derived from GK2A with Aeolus/ALADIN (위성기반 GK2A의 대기운동벡터와 Aeolus/ALADIN 바람 비교)

  • Shin, Hyemin;Ahn, Myoung-Hwan;KIM, Jisoo;Lee, Sihye;Lee, Byung-Il
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1631-1645
    • /
    • 2021
  • This research aims to provide the characteristics of the world's first active lidar sensor Atmospheric Laser Doppler Instrument (ALADIN) wind data and Geostationary Korea Multi Purpose Satellite 2A (GK2A) Atmospheric Motion Vector (AMV) data by comparing two wind data. As a result of comparing the data from September 2019 to August 1, 2020, The total number of collocated data for the AMV (using IR channel) and Mie channel ALADIN data is 177,681 which gives the Root Mean Square Error (RMSE) of 3.73 m/s and the correlation coefficient is 0.98. For a more detailed analysis, Comparison result considering altitude and latitude, the Normalized Root Mean Squared Error (NRMSE) is 0.2-0.3 at most latitude bands. However, the upper and middle layers in the lower latitudes and the lower layer in the southern hemispheric are larger than 0.4 at specific latitudes. These results are the same for the water vapor channel and the visible channel regardless of the season, and the channel-specific and seasonal characteristics do not appear prominently. Furthermore, as a result of analyzing the distribution of clouds in the latitude band with a large difference between the two wind data, Cirrus or cumulus clouds, which can lower the accuracy of height assignment of AMV, are distributed more than at other latitude bands. Accordingly, it is suggested that ALADIN wind data in the southern hemisphere and low latitude band, where the error of the AMV is large, can have a positive effect on the numerical forecast model.