• Title/Summary/Keyword: LED light

Search Result 2,617, Processing Time 0.029 seconds

Effect of LED light on the inactivation of Bacillus cereus for extending shelf-life of extruded rice cake and simulation of the patterns of LED irradiation by various arrays of LEDs (압출떡의 유통기한 연장을 위한 LED 조사의 Bacillus cereus 억제 효과 및 LED의 배열에 따른 빛의 조사 패턴 시뮬레이션)

  • Jung, Hwabin;Yuk, Hyun-Gyun;Yoon, Won Byong
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.2
    • /
    • pp.181-186
    • /
    • 2019
  • The optimum design of LED device for irradiation of 460 nm blue light on extruded rice cake using simulation and the effect of the blue light on the inactivation of Bacillus cereus (B. cereus) group on the rice cake were investigated. The irradiated light intensity patterns on the surface area of the sample were simulated with three different LED arrays (centered, cross, and evenly spaced) and at various distances (22, 32, 42 mm) between the LED modules and the sample. In addition, the uniformity was calculated as Petri factor. The evenly spaced array resulted the most uniform light intensity pattern in the simulation, and the Petri factor of 32 and 42 mm of the distances showed higher than 0.9, which represents the ideal uniformity of LED device. The bacterial population of the rice cake decreased to less than the initial bacterial population during exposure to LED blue light, whereas the bacterial population of the control sample increased. The bacterial count of the rice cake after blue light irradiation for 24 h was 1.21 log CFU/g lower than the control sample. Petri factor increased with increase of the distance between the light source and sample, however, the reduction rate of B. cereus group decreased. Therefore, the design of LED device, that represented the Petri factor higher than 0.9 and inactivated the population of B. cereus group, with evenly spaced and 32 mm of distance between the light source and sample was suitable for extending shelf-life of rice cake.

Considering about lighting for concrete main structure using LED (LED를 이용한 등대 표체 경관조명에 관한 고찰)

  • Han, Ji-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.538-539
    • /
    • 2009
  • The light of lighthouse as aids to navigation has been using filament with incandescent bulb so heat is being changed to light. More and More, LED leading lights, LED lantern, LED concrete main structure, LED bulb which have advantages of low power consumption and longer durability, what we call radiating diode, will lead the market in few years.

  • PDF

A Basic Study on the Application of Composite Materials for the Light-weight LED Beacon (LED 등명기 경량화를 위한 복합재료 적용 기초 연구)

  • Yoo, Seong-Hwan;Shin, Kyung-Ho;Lee, Donghee
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.322-326
    • /
    • 2015
  • We developed the high-power LED beacon and investigated the applicability of composite materials for the light-weight design of LED beacon. By means of the application of composite materials, the vertical deformation could be reduced by 17% and the total weight of LED beacon 8.9 kg comparable to 20% light-weighting against aluminum beacon. In thermal radiation test, the maximum temperature of LED package was measured to $63.5^{\circ}C$ under ambient temperature ($20^{\circ}C$), which is acceptable considering both performance and lifespan of LED packages. In this study, the applicability of composite materials was demonstrated for light-weight design of high-power LED beacon.

Light Efficiency of LED Street Light Using AC DOB Technology (AC DOB 기술을 적용한 LED 가로등의 조명 성능)

  • Kwon, Sun-Pil;Lee, Soo-Young;Yoo, Kyung-Sun;Hyun, Dong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.230-236
    • /
    • 2016
  • This research attempted simplifications to the LED street light for price competitiveness. The street light was simplified by replacing the SMPS with an IC driver on the PCB using an AC-type LED. The optical element that shape of a line-shaped lens covered LED crowded. Thus, this study aims to improve LED efficiency by using the minimum optical system. In order to satisfy the M3 regulation of street lighting at grade, the lens was divided into two parts depending on the forward direction of the light. Further, the changes in the number of LEDs located on part 1 and part 2 of the lens were analyzed. Through simulation, we determined the proper light distribution that meets M3 regulation of street lighting.

A Study on Improvement of the Light Emitting Efficiency on Flip Chip LED with Patterned Sapphire Substrate by the Optical Simulation (광학 시뮬레이션을 이용한 Patterned Sapphire Substrate에 따른 Flip Chip LED의 광 추출 효율 변화에 대한 연구)

  • Park, Hyun Jung;Lee, Dong Kyu;Kwak, Joon Seop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.676-681
    • /
    • 2015
  • Recently many studies being carried out to increase the light efficiency of LED. The external quantum efficiency of LED, generally the light efficiency, is determined by the internal quantum efficiency and the light extraction efficiency. The internal quantum efficiency of LED was already reached to more than 90%, but the light extraction efficiency is still insufficient compared with the internal quantum efficiency because the total internal reflection is generated in the interface between the LED chip and air. Thus, we studied about flip chip LED with PSS and performed the optical simulation which find more optimized PSS for flip chip LED to increase the light extraction efficiency. Decreasing of the total internal reflection and effect of diffused reflection according to PSS improved the light extraction efficiency. To get more higher the efficiency, we simulated flip chip with PSS that the parameters are arrangement, edge spacing, radius, height and shape of PSS.

Performance Investigation of Visible Light Communication Using Super Bright White LED and Fresnel Lens (조명용 고출력 백색 LED와 프레넬 렌즈를 이용한 가시광 통신 성능연구)

  • Kim, Min-Soo;Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.63-67
    • /
    • 2015
  • White light-emitting diode (WLED) is growing interest in using both illumination and communications. This paper reports visible light communication (VLC) composed of a super bright white light-emitting diode, low cost commercial photo-diode and a Fresnel lens. LED driver is consisted of the power MOSFET and MOSFET driver that switches the LED on and off. The modulation bandwidth of the LED used was determined to be 8 MHz. However, it was possible to communicate up to 1 Mbps under illumination of 500 lx because of the weak signal power and a low spectral sensitivity of the SHF213 as a PIN photodiode. In order to enhance the system bandwidth, the LED light was focused on the PIN photodiode by use of the Fresnel lens. As a result of that, visible light link was operated up to modulation bandwidth of the LED. The signal to noise ratio can be improved by 40 dB using an optical concentration at the receiver.

Regulation of Acid Contents in Kiwifruit Irradiated by Various Wavelength of Light Emitting Diode during Postharvest Storage (다양한 파장의 LED 조사를 통한 참다래 과실의 산 함량 조절)

  • Baek, Kwang-Hyun;Jang, Myung-Hwan;Kwack, Yong-Bum;Lee, Se-Weon;Yun, Hae-Keun
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.88-94
    • /
    • 2010
  • The physiological roles of various wavelength of light emitting diode (LED) on ‘Hayward’ kiwifruit experiencing after-ripening were investigated. Various wavelengths from LED light source were irradiated on kiwifruits kept in plastic bags or under open air at $25^{\circ}C$. During two weeks of storage, firmness of Hayward kiwifruits was decreased by $25^{\circ}C$ treatment than by $4^{\circ}C$ treatment. In the $25^{\circ}C$ storage condition, the firmness of kiwifruits was decreased by the treatment of 380 nm UV and 470nm white LED light source. Sweetness of kiwifruits treated with 380 nm UV LED and dark condition at $25^{\circ}C$ increased higher than $15^{\circ}$Brix. The acidity of kiwifruits under open air was decreased 52% by incubating at $25^{\circ}C$ with 660 nm red LED treatment. The acidity of kiwifruits in plastic bags was decreased 52.6, 55.6, 52.8% by the treatment of 440 nm blue, 470 nm white and 660 nm red LED light source, respectively, compared to that of kiwifruits incubated in darkness at $25^{\circ}C$. Decreased acidity irradiated by 660 nm red LED light source can be applied for regulating periods of the kiwifruit after-ripening process. LED light sources emit very narrow wavelength with a power-saving mode, therefore, the usage of these LED light source for regulating the after-ripening process can be classified as a clean biotechnology producing safe and environment-friendly kiwifruits.

Effect of Different Light Emitting Diode (LED) Lights on the Growth Characteristics and the Phytochemical Production of Strawberry Fruits during Cultivation (파장별 LED광이 딸기의 생장 특성과 생리 활성 물질 형성에 미치는 효과)

  • Choi, Hyo Gil;Kwon, Joon Kook;Moon, Byoung Yong;Kang, Nam Jun;Park, Kyoung Sub;Cho, Myeong Whan;Kim, Young Cheol
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.56-64
    • /
    • 2013
  • Recent unusual weather due to global warming causes shortage of daily sunlight and constitutes one of the primary reasons for agricultural damages. LED light sources are frequently utilized to compensate for the shortage of sunlight in greenhouse agriculture. The present study is aimed at evaluating formations of phytochemicals as well as growth characteristics of mature strawberry fruits ('Daewang' cultivar) during cultivation in a closed growth chamber equipped with artificial LED light as a sole light source. Each LED light of blue (448 nm), red (634 and 661 nm) or mixed blue plus red (blue:red = 3:7) was separately supplied and the intensity of each light was adjusted to $200{\pm}1{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at plant level with a photoperiod consisted of 16 hours light and 8 hours darkness. Strawberries grown under mixed LED light of blue and red wavelengths showed a higher production of fruits than those grown under other LED treatments. Fructose, one of the free sugars, increased in mixed LED light-grown fruits. Anthocyanin contents were elevated remarkably in the mixed LED light-grown fruits compared with those in other LED treatments. Contrastingly, contents of total phenolics and flavonoids were not of much different from one another among the fruits treated with various LED lights. On the other hand, ripening of strawberry fruits was found to be faster when grown under blue LED light compared with other LED treatments. Moreover, antioxidant activities of blue or red LED light-grown fruits, respectively, were significantly higher than those of mixed LED light-grown fruits. We suggest that when daylight is in shortage during cultivation in a greenhouse, supplementation of sunlight with LED light, which is composed of blue and red wavelengths, could be useful for the enhancement of productivity as well as of free sugar content in strawberry fruits. In addition, for the strawberry culture in the plant factory, selective adoption of LED light wavelength would be required to accomplish the purpose of controlling fruit maturation time as well as of enhancing contents of sugars and antioxidants of fruits.

Seedling Quality and Early Yield after Transplanting of Paprika Nursed under Light-emitting Diodes, Fluorescent Lamps and Natural Light (발광다이오드, 형광등 및 자연광 하에서 육묘된 파프리카의 묘소질 및 정식 후 초기 수량)

  • Lee, Jae Su;Lee, Hye In;Kim, Yong Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.220-227
    • /
    • 2012
  • This study was conducted to analyze the seeding quality of paprika and the growth and early yield after transplanting of paprika nursed under artificial light and natural light. In this study, blue LED, red LED, and white fluorescent lamps (FL) were used as artificial lighting sources. Photoperiod, average photosynthetic photon flux, air temperature, and relative humidity in a closed transplants production system (CTPS) were maintained at 16/8 h, $204{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 26/$20^{\circ}C$, and 70%, respectively. Leaf length, leaf width, leaf area, top fresh weight and dry weight of paprika seedlings, and chlorophyll content in paprika leaves nursed under LED and fluorescent lamps for 21 days after experiment were significantly affected by light treatments. As compared with the control (white FL), leaf area of paprika grown under blue LED, red LED, and natural light was decreased by 63%, 63%, and 28%, respectively. Top dry weight of paprika grown under blue LED, red LED, and natural light was 64%, 50%, and 22%, respectively, compared with the control. Number of leaves on 18 days after transplanting showed with red LED, blue LED, and natural light by 86%, 84%, and 48%, respectively, compared with the control. On 114 days after transplanting, paprika nursed under blue LED and red LED had relatively short plant height. This result might be caused that the elongation of its internodes was suppressed by the illumination of sole blue or red light. Average number of fruits per plant harvested during 4 weeks after first harvest was 3.5 with red LED, 3.3 with blue LED, 1.0 with natural light, and 2.2 with control, respectively. Early yield of paprika nursed under red LED, blue LED, natural light, and control were 453 g/plant, 403 g/plant, 101 g/plant, and 273 g/plant, respectively. Larger fruit of 136 g was harvested with red LED treatment. Even though the early yield of paprika was greatly increased with artificial lighting, but total yield was almost similar as the harvest period after transplanting in greenhouses was lengthened. From the above results, we could understand that paprika nursed under white FL, blue LED, and red LED showed good growth after transplanting and was early harvested by a week as compared to the natural light. Therefore, the white FL, blue LED, and red LED as the artificial lighting sources in CTPS could be strategically used to enhance the seedling quality, to shorten the harvest time, and to increase the yield of paprika.

Optical Illumination System Design for LED Masthead Navigation Light (LED 광원을 이용한 마스트 항해등 조명광학계 개발)

  • Maeng, Pil-Jae;Jang, Jae-Hyeon;Kim, Kun-Yul;Yu, Young-Moon;Kim, Jong-Su;Kim, Jong-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.24-31
    • /
    • 2014
  • This paper dealt with the LED optical illumination system design for the Masthead navigation light to replace halogen lamps. We made Fresnel lens satisfy luminous intensity distribution of "Convention on the International Regulation for Preventing Collisions at Sea(COLREG)". The optical system is designed by classifying three parts: light source, lens, and cut off plate. The source of light has been made to have the uniform horizontal and vertical light distribution by placing 6 LEDs at intervals of $54^{\circ}$, and as the cylindrical Fresnel lens, the lens has been designed to achieve the uniform horizontal and vertical light distribution in the range of plain light. Finally, the cover has been designed to block the light from the outside of plain light and ultimately met the standards for light distribution of navigation lights. In addition, the validity of design has been verified with manufacturing a trial product.