• Title/Summary/Keyword: LED 모듈

Search Result 298, Processing Time 0.024 seconds

Design and Development of Personal Healthcare System Based on IEEE 11073/HL7 Standards Using Smartphone (스마트폰을 이용한 IEEE 11073/HL7 기반의 개인 건강관리 시스템 설계 및 구현)

  • Nam, Jae-Choong;Seo, Won-Kyeong;Bae, Jae-Seung;Cho, You-Ze
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1556-1564
    • /
    • 2011
  • The increased life expectancy of human due to the advance of medical techniques has led to many social problems such as rapidly aging populations, increased medical expenses and a lack of medical specialists. Thus, studies on improving the quality of life with the least amount of expense have been going on by incorporating advanced technologies, especially for Personal Health Devices (PHDs), into the medical service market. However, compatibility and extensibility among manufacturers of PHDs have not been taken into account in most of the researches done on the development of PHDs because most of them have been supported by individual medical organizations. The interoperability among medical organizations can not be guaranteed because each medical organization uses different format of the messages. Therefore, in this paper, an expansion module that can enable commercially-available non-standard PHDs to support the IEEE 11073, and a smart-phone-based manager that can support easy and comprehensive management on receiving and transmitting the collected data from each PHD using IEEE 11073 standard were developed. In addition, a u-health system that can transmit the data collected in the manager using the standard data format HL 7 to medical center for real-time medical service from every medical institutions that support this standard was designed and developed.

Use of Light Emitting Diode for Enhanced Activity of Sulfate Reducing Bacteria in Mine Drainage Treatment Process Under Extreme Cold (혹한기 광산배수 처리 공정 내 황산염 환원 박테리아의 활성 증진을 위한 발광다이오드의 이용 제안)

  • Choi, Yoojin;Choi, Yeon Woo;Lee, An-na;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.50 no.3
    • /
    • pp.251-256
    • /
    • 2017
  • This study presents measures to enhance the efficiency of Successive Alkalinity Producing Systems(SAPS), a natural biological purification method that prevents environmental pollution arising from the release of Acid Mine Drainage(AMD) from abandoned mines into rivers and groundwater. The treatment of AMD using SAPS is based on biological processing technology that mostly involves sulfate reducing bacteria(SRB). It has been proven effective in real-world applications, and has been employed in various projects on the purification of AMD. However, seasonal decrease in temperature leads to a deterioration in the efficiency of the process because sulfate-reducing activity is almost non-existent during cold winters and early spring even if SRB is able to survive. Against this backdrop, this study presents measures to enhance the activity of the SRB of the organic layer by integrating light emitting diode(LED)s in SAPS and to maintain the active temperature using LEDs in cold winters. Given that mine drainage facilities are located in areas where power cannot be easily supplied, solar cell modules are proposed as the main power source for LEDs. By conducting further research based on the present study, it will be possible to enhance the efficiency of AMD treatment under extreme cold weather using solar energy and LEDs, which will serve as an environmentally-friendly solution in line with the era of green growth.

A Study on the Development of a Full-Cycle Smart City Living Lab Model (전주기형 스마트시티 리빙랩 모델 개발 연구)

  • Park, Jun-Ho;Park, Jeong-Woo;Nam, Kwang-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.162-170
    • /
    • 2021
  • The Smart City Living Lab is becoming important as a local innovation platform to develop urban solutions. In January 2018, the 4th industrial innovation committee, which was a direct subordinate from the president, empathized citizens' participation and their roles within the Smart City [Urban Innovation and Future Growth Engine-Creating Smart City Strategy]. This was the starting point of the living lab. The central government and local governments have been promoting various types of living labs to encourage citizens to participate. On the other hand, due to the lack of systematic concepts and theories for practicing and structuring living labs, the practice is not performed well. This study aimed to develop systematic approaches and implementation methods of the public-led Smart City Living Lab. The Full-cycle Smart City living Lab model was designed by integrating smart city living lab work processes, as suggested in the standards of the national land plan, double design diamond framework, which is a type of innovative design methodology, and design thinking process. The entire cycle Smart City living lab model requires four components to practice the living lab, such as framework, module, process, and methodologies. In the future, this model is expected to be incorporated in the Smart City Living Lab.

An Exploratory Study for Metaverse Governance in the Public Sector (공공 메타버스 거버넌스에 대한 탐색적 연구)

  • Haejung Yun;Jaeyoung An;Sang Cheol Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.353-376
    • /
    • 2023
  • The global pandemic and the development of virtual and augmented reality technologies have led a metaverse boom that enables a lot of interactions in virtual worlds, and is being utilized in various fields such as business, government, and education etc. Despite the growing interest in the metaverse, its scope and definition are still unclear and the concept is still evolving, making it challenging to establish its governance. Governmental entities are also investing intensively in public metaverses to make public value and promote social welfare, but they are underutilized due to lack of systematic governance. Therefore, in this study, we propose a public metaverse governance framework and identify the relative importance of the factors. Furthermore, since a public metaverse should be accessible to anyone who wants to use, we explore the factors of shadow work and examine the ways to minimize it. Based on the socio-technical system theory, we derived public metaverse governance factors from previous literature and topic modeling and then generate a framework with 23 factors through expert interviews. We then tested relative priority of the factors using the analytic hierarchical process (AHP) from the experts. As a result, the top five overall rankings are: 'roles and responsibilities', 'standardization/modularization', 'collaboration and communication', 'law and policies', and 'availability/accessibility'. The academic implications of this study are that it provides a comprehensive framework for public metaverse governance, and then the practical implications include suggesting prioritized considerations for metaverse operations in the public sector.

A Study on The Virtuous Cycle of The Value Chain and Value System in Korean Photovoltaic Industry (한국 태양광산업의 가치사슬과 가치시스템 선순환 구조 분석)

  • Park, Sung-Hwan;Park, Min-Hyug;Park, Jung-Gu
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.21-32
    • /
    • 2014
  • This study has analyzed whether the virtuous cycle of value-added between the processes within the company has formed and whether the virtuous ecosystem between the processes within the industry has been built through the analysis of value chain(VC) and value system(VS) targeting the Korean photovoltaic companies. For a study method, after conducting a survey on the companies, a regression analysis was performed on the causal relationship between the process within the VC and VS. Based on the results of the analysis, for the VC of the Korean photovoltaic industry, an increase in the R&D support from the government has led to the increase in the investment of R&D for the related industry, and the increase in the investment of R&D has contributed to the increase in the growth of its productivity, and the growth in the productivity of R&D has influenced the increase in the production of solar products. In addition, the reduction of photovoltaic production cost for the company has influenced the increase of recurring profit margin compared to the sales. However it was shown that the increase in the company's production volume does not contribute to the reduction of production cost. Meanwhile, the increase in recurring profit margin compared to the sales were influencing the increase in the production volume but it was shown that the increase in the company's investment of R&D was not a contributing factor thus it was not included in the virtuous cycle. It was analyzed that the VS was shown not to influence all other processes within the industry except for the module companies where the increase in the recurring profit margin compared to the sales was influenced by the increase in the recurring profit margin compared to the sales of solar cell companies. This shows that the virtuous industrial ecosystem which should be made under the mutual cooperation by the ingot, wafer, solar cell, module and system companies are yet incomplete.

Development of A Three-Variable Canopy Photosynthetic Rate Model of Romaine Lettuce (Lactuca sativa L.) Grown in Plant Factory Modules Using Light Intensity, Temperature, and Growth Stage (광도, 온도, 생육 시기에 따른 식물공장 모듈 재배 로메인 상추의 3 변수 군락 광합성 모델 개발)

  • Jung, Dae Ho;Yoon, Hyo In;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.268-275
    • /
    • 2017
  • The photosynthetic rates of crops depend on growth environment factors, such as light intensity and temperature, and their photosynthetic efficiencies vary with growth stage. The objective of this study was to compare two different models expressing canopy photosynthetic rates of romaine lettuce (Lactuca sativa L., cv. Asia Heuk romaine) using three variables of light intensity, temperature, and growth stage. The canopy photosynthetic rates of the plants were measured 4, 7, 14, 21, and 28 days after transplanting at closed acrylic chambers ($1.0{\times}0.8{\times}0.5m$) using light-emitting diodes, in which indoor temperature and light intensity were designed to change from 19 to $28^{\circ}C$ and 50 to $500{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. At an initial $CO_2$ concentration of $2,000{\mu}mol{\cdot}mol^{-1}$, the canopy photosynthetic rate began to be calculated with $CO_2$ decrement over time. A simple multiplication model expressed by simply multiplying three single-variable models and a modified rectangular hyperbola model were compared. The modified rectangular hyperbola model additionally included photochemical efficiency, carboxylation conductance, and dark respiration which vary with temperature and growth stage. In validation, $R^2$ value was 0.849 in the simple multiplication model, while it increased to 0.861 in the modified rectangular hyperbola model. It was found that the modified rectangular hyperbola model was more suitable than the simple multiplication model in expressing the canopy photosynthetic rates affected by environmental factors (light Intensity and temperature) and growth factor (growth stage) in plant factory modules.

Changes in Meteorological Variables by SO2 Emissions over East Asia using a Linux-based U.K. Earth System Model (리눅스 기반 U.K. 지구시스템모형을 이용한 동아시아 SO2 배출에 따른 기상장 변화)

  • Youn, Daeok;Song, Hyunggyu;Lee, Johan
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.60-76
    • /
    • 2022
  • This study presents a software full setup and the following test execution times in a Linux cluster for the United Kingdom Earth System Model (UKESM) and then compares the model results from control and experimental simulations of the UKESM relative to various observations. Despite its low resolution, the latest version of the UKESM can simulate tropospheric chemistry-aerosol processes and the stratospheric ozone chemistry using the United Kingdom Chemistry and Aerosol (UKCA) module. The UKESM with UKCA (UKESM-UKCA) can treat atmospheric chemistryaerosol-cloud-radiation interactions throughout the whole atmosphere. In addition to the control UKESM run with the default CMIP5 SO2 emission dataset, an experimental run was conducted to evaluate the aerosol effects on meteorology by changing atmospheric SO2 loading with the newest REAS data over East Asia. The simulation period of the two model runs was 28 years, from January 1, 1982 to December 31, 2009. Spatial distributions of monthly mean aerosol optical depth, 2-m temperature, and precipitation intensity from model simulations and observations over East Asia were compared. The spatial patterns of surface temperature and precipitation from the two model simulations were generally in reasonable agreement with the observations. The simulated ozone concentration and total column ozone also agreed reasonably with the ERA5 reanalyzed one. Comparisons of spatial patterns and linear trends led to the conclusion that the model simulation with the newest SO2 emission dataset over East Asia showed better temporal changes in temperature and precipitation over the western Pacific and inland China. Our results are in line with previous finding that SO2 emissions over East Asia are an important factor for the atmospheric environment and climate change. This study confirms that the UKESM can be installed and operated in a Linux cluster-computing environment. Thus, researchers in various fields would have better access to the UKESM, which can handle the carbon cycle and atmospheric environment on Earth with interactions between the atmosphere, ocean, sea ice, and land.

A Study on Public Interest-based Technology Valuation Models in Water Resources Field (수자원 분야 공익형 기술가치평가 시스템에 대한 연구)

  • Ryu, Seung-Mi;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.177-198
    • /
    • 2018
  • Recently, as economic property it has become necessary to acquire and utilize the framework for water resource measurement and performance management as the property of water resources changes to hold "public property". To date, the evaluation of water technology has been carried out by feasibility study analysis or technology assessment based on net present value (NPV) or benefit-to-cost (B/C) effect, however it is not yet systemized in terms of valuation models to objectively assess an economic value of technology-based business to receive diffusion and feedback of research outcomes. Therefore, K-water (known as a government-supported public company in Korea) company feels the necessity to establish a technology valuation framework suitable for technical characteristics of water resources fields in charge and verify an exemplified case applied to the technology. The K-water evaluation technology applied to this study, as a public interest goods, can be used as a tool to measure the value and achievement contributed to society and to manage them. Therefore, by calculating the value in which the subject technology contributed to the entire society as a public resource, we make use of it as a basis information for the advertising medium of performance on the influence effect of the benefits or the necessity of cost input, and then secure the legitimacy for large-scale R&D cost input in terms of the characteristics of public technology. Hence, K-water company, one of the public corporation in Korea which deals with public goods of 'water resources', will be able to establish a commercialization strategy for business operation and prepare for a basis for the performance calculation of input R&D cost. In this study, K-water has developed a web-based technology valuation model for public interest type water resources based on the technology evaluation system that is suitable for the characteristics of a technology in water resources fields. In particular, by utilizing the evaluation methodology of the Institute of Advanced Industrial Science and Technology (AIST) in Japan to match the expense items to the expense accounts based on the related benefit items, we proposed the so-called 'K-water's proprietary model' which involves the 'cost-benefit' approach and the FCF (Free Cash Flow), and ultimately led to build a pipeline on the K-water research performance management system and then verify the practical case of a technology related to "desalination". We analyze the embedded design logic and evaluation process of web-based valuation system that reflects characteristics of water resources technology, reference information and database(D/B)-associated logic for each model to calculate public interest-based and profit-based technology values in technology integrated management system. We review the hybrid evaluation module that reflects the quantitative index of the qualitative evaluation indices reflecting the unique characteristics of water resources and the visualized user-interface (UI) of the actual web-based evaluation, which both are appended for calculating the business value based on financial data to the existing web-based technology valuation systems in other fields. K-water's technology valuation model is evaluated by distinguishing between public-interest type and profitable-type water technology. First, evaluation modules in profit-type technology valuation model are designed based on 'profitability of technology'. For example, the technology inventory K-water holds has a number of profit-oriented technologies such as water treatment membranes. On the other hand, the public interest-type technology valuation is designed to evaluate the public-interest oriented technology such as the dam, which reflects the characteristics of public benefits and costs. In order to examine the appropriateness of the cost-benefit based public utility valuation model (i.e. K-water specific technology valuation model) presented in this study, we applied to practical cases from calculation of benefit-to-cost analysis on water resource technology with 20 years of lifetime. In future we will additionally conduct verifying the K-water public utility-based valuation model by each business model which reflects various business environmental characteristics.