DOI QR코드

DOI QR Code

Use of Light Emitting Diode for Enhanced Activity of Sulfate Reducing Bacteria in Mine Drainage Treatment Process Under Extreme Cold

혹한기 광산배수 처리 공정 내 황산염 환원 박테리아의 활성 증진을 위한 발광다이오드의 이용 제안

  • Choi, Yoojin (Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Choi, Yeon Woo (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, An-na (Department of Test Planning Team, Korea Consumer Agency) ;
  • Kim, Kyoung-Woong (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST))
  • 최유진 (한국과학기술원 생명화학공학과) ;
  • 최연우 (광주과학기술원 지구.환경공학부) ;
  • 이안나 (한국소비자원 시험기획팀) ;
  • 김경웅 (광주과학기술원 지구.환경공학부)
  • Received : 2017.05.18
  • Accepted : 2017.06.19
  • Published : 2017.06.28

Abstract

This study presents measures to enhance the efficiency of Successive Alkalinity Producing Systems(SAPS), a natural biological purification method that prevents environmental pollution arising from the release of Acid Mine Drainage(AMD) from abandoned mines into rivers and groundwater. The treatment of AMD using SAPS is based on biological processing technology that mostly involves sulfate reducing bacteria(SRB). It has been proven effective in real-world applications, and has been employed in various projects on the purification of AMD. However, seasonal decrease in temperature leads to a deterioration in the efficiency of the process because sulfate-reducing activity is almost non-existent during cold winters and early spring even if SRB is able to survive. Against this backdrop, this study presents measures to enhance the activity of the SRB of the organic layer by integrating light emitting diode(LED)s in SAPS and to maintain the active temperature using LEDs in cold winters. Given that mine drainage facilities are located in areas where power cannot be easily supplied, solar cell modules are proposed as the main power source for LEDs. By conducting further research based on the present study, it will be possible to enhance the efficiency of AMD treatment under extreme cold weather using solar energy and LEDs, which will serve as an environmentally-friendly solution in line with the era of green growth.

본 연구는 폐광산에서 배출되는 산성광산배수가 하천수 및 지하수에 유출되면서 발생되는 환경 오염들을 막기 위해 생물학적 자연정화 처리 방법인 연속적 알칼리도 생성 시스템의 효율을 증대 시키는 방안에 관한 연구이다. 연속적 알칼리도 생성 시스템를 이용한 산성광산배수의 처리는 대부분 황산염 환원 박테리아를 이용한 생물학적 처리 기술이며, 실제 현장 적용실험에서 그 효과가 증명되었고, 광산배수 정화 사업에 적용하도록 개발된 사례가 많다. 그러나 계절적인 온도 저하로 기온이 매우 낮은 겨울이나 초봄 동안에는 황산염 환원 박테리아가 생존은 가능하더라도 황산염을 환원시키는 활동이 거의 멈추게 되어 지속적인 산성광산배수 처리 효율에 문제점을 야기한다. 본 연구에서는 연속적 알칼리도 생성 시스템에 발광 다이오드를 접목하여 유기물 층의 황산염 환원 박테리아 활성을 증진시키고, 온도가 낮은 겨울철에도 발광 다이오드의 발열 효과를 이용하여 활성 온도를 유지 할 수 있는 방안을 제안한다. 더불어, 산성광산배수 처리 시설은 전력을 쉽게 공급할 수 없는 곳에 위치한 지리적인 특성을 고려하여, 발광 다이오드에 전원을 공급할 수 있는 전원 공급 장치로 태양 전지 모듈 사용을 제안한다. 본 방법을 통하여 추가적 연구들이 진행된다면, 태양광 에너지와 발광 다이오드를 융합한 친환경적인 방법을 이용하여 겨울철에도 산성광산배수 처리 기술의 효율을 극대화 할 수 있을 것이다.

Keywords

References

  1. Akcil, A. and Koldas, S. (2006) Acid mine drainage (AMD): causes, treatment and case studies. Journal of Cleaner Production, v.14, p.1139-1145. https://doi.org/10.1016/j.jclepro.2004.09.006
  2. Bai, H., Kang, Y., Quan, H., Han, Y., Sun, J. and Feng, Y. (2013) Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs. Bioresource Technology, v.128, p.818-822. https://doi.org/10.1016/j.biortech.2012.10.070
  3. Cheong, Y.W. (2004) An overview of coal mine drainage treatment. Economic and Environmental Geology, v.37, p.107-111.
  4. Elliott, P., Ragusa, S. and Catcheside, D. (1998) Growth of sulfate-reducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage. Water Research, v.32, p.3724-3730. https://doi.org/10.1016/S0043-1354(98)00144-4
  5. Eo, I.-S., Yang, H.-S., Choi, S.-I and Hwangbo, S. (2007) Research on heat-sink of 40Watt LED lighting using peltier module. Journal of the Korea Academia-Industrial cooperation Society, v.8, p.733-737.
  6. Ferl, R.J. and Paul, A.-L. (2016) The effect of spaceflight on the gravity-sensing auxin gradient of roots: GFP reporter gene microscopy on orbit. npj Microgravity, v.2, p.1-9. https://doi.org/10.1038/s41526-016-0007-3
  7. Gazea, B., Adam, K. and Kontopoulos, A. (1996) A review of passive systems for the treatment of acid mine drainage. Minerals Engineering, v.9, p.23-42. https://doi.org/10.1016/0892-6875(95)00129-8
  8. Gibert, O., de Pablo, J., Cortina, J.L. and Ayora, C. (2005) Sorption studies of Zn (II) and Cu (II) onto vegetal compost used on reactive mixtures for in-situ treatment of acid mine drainage. Water Research, v.39, p.2827-2838. https://doi.org/10.1016/j.watres.2005.04.056
  9. Gusek, J.J. (2001) Why Do Some Passive Treatment Systems Fail While Others Work? Proceedings of the Nation Association of Abandoned Mine Land Programs, Athens, Ohio, August 19-22.
  10. Ji, S.W. and Kim, S.J. (2003) The contamination of groundwater by acid mine drainage in the vicinity of the Hanchang coal mine and the efficency of the passive treatment system. Journal of KoSSGE, v.8, p.9-18.
  11. Johnson, D.B. and Hallberg, K.B. (2005) Acid mine drainage remediation options: a review. Science of the Total Environmental, v.338, p.3-14. https://doi.org/10.1016/j.scitotenv.2004.09.002
  12. Jung, S., Ji, S., Kang, H., Yim, G. and Cheong, Y. (2012) Biotechnology in passive treatment of acid mine drainage: a review. The Korean Society for Geosystem Engineering, v.49, p.833-854.
  13. Khan, M., Lee, M.G., Seo, H.J., Shin, J.H., Shin, T.S., Yoon, Y.H., Kim, M.Y., Choi, J.I. and Kim, J.D. (2016) Enhancing the feasibility of Microcystis aeruginosa as a feedstock for bioethanol production under the influence of various factors. BioMed Reseach International, v.2016, p.1-9.
  14. Kim, D.-G. and Kil, G.-S. (2012) A Study on the heat radiation of LED luminaires and the indoor temperature increase. Journal of the Korean Institute of Electrical and Electronic Material Engineers, v.25, p.738-742. https://doi.org/10.4313/JKEM.2012.25.9.738
  15. Kim, G.M., Hur, W. and Baek, H.J. (2008) Treatment of acid mine drainage using immobilized beads carrying sulfate reducing bacteria. Economic and Environmental Geology, v.41, p.57-62.
  16. Liu, Y. (2003) Molecular mechanisms of entrainment in the Neurospora circadian clock. Journal of Biological Rhythms, v.18, p.195-205. https://doi.org/10.1177/0748730403018003002
  17. Lubart, R., Lipovski, A., Nitzan, Y. and Friedmann, H. (2011) A possible mechanism for the bactericidal effect of visible light. Laser Therapy, v.20, p.17-22. https://doi.org/10.5978/islsm.20.17
  18. Madzivire, G., Petrik, L.F., Gitari, W.M., Ojumu, T.V. and Balfour, G. (2010) Application of coal fly ash to circumneutral mine waters for the removal of sulphates as gypsum and ettringite. Minerals Engineering, v.23, p.252-257. https://doi.org/10.1016/j.mineng.2009.12.004
  19. McCauley, C.A., O'Sullivan, A.D., Milke, M.W., Weber, P.A. and Trumm, D.A. (2009) Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum. Water Research, v.43, p.961-970. https://doi.org/10.1016/j.watres.2008.11.029
  20. Nie, M., Bell, C., Wallenstein, M.D. and Pendall, E. (2015) Increased plant productivity and decreased microbial respiratory C loss by plant growth-promoting rhizobacteria under elevated $CO_2$. Scientific Reports, v.5, p.1-6. https://doi.org/10.9734/JSRR/2015/14076
  21. Ryu, C.S., Kim, Y.H. and Kim, J.J. (2014) Evaluation of purification efficiency of passive treatment systems for acid mine drainage and characterization of precipitates in Ilwal coal mine. Journal of the mineralogical society of korea, v.27, p.97-105. https://doi.org/10.9727/jmsk.2014.27.2.97
  22. Sanchez-Andrea, I., Sanz, J.L., Bijmans, M.F. and Stams, A.J. (2014) Sulfate reducton at low pH to remediate acid mine drainge. Journal of Hazardous Materials, v.269, p.98-109. https://doi.org/10.1016/j.jhazmat.2013.12.032
  23. Shu, C.-H., Huang, C.-K. and Tsai, C.-C. (2009) Effects of light wavelength and intensity on the production of ethanol by Saccharomyces cerevisiae in batch cultures. Journal of Chemical Technology and Biotechnology, v.84, p.1156-1162. https://doi.org/10.1002/jctb.2148
  24. Song, K., Lee, S.H., Mitsch, W.J. and Kang, H. (2010) Different responses of denitrification rates and denitrifying bacterial communities to hydrologic pulsing in created wetlands. Soil Biology and Biochemistry, v.42, p.1721-1727. https://doi.org/10.1016/j.soilbio.2010.06.007
  25. Ulaszewski, S., Mamouneas, T., Shen, W.K., Rosenthal, P.J., Woodward, J.R., Cirillo, V.P. and JR, L.N.E (1979) Light effects in yeast: evidence for participation of cytochromes in photoinhibition of growth and transport in Saccharomyces cerevisiae cultured at low temperatures. Journal of Bacteriology, v.138, p.523-529.
  26. Yadav, H.L. and Jamal, A. (2016) Treatment of acid mine drainage: a general review. International Advanced Research Journal in Science, Engineering and Technology, v.3, p.116-122.