• 제목/요약/키워드: LCOE(Levelized cost of energy)

검색결과 22건 처리시간 0.017초

발전소 온배수열 활용사업의 경제적 유인제도 연구 : 에너지균등화비용(LCOE) 분석을 중심으로 (A Study on the Incentive-based Strategies for Utilization of Thermoelectric Power Plant Hot Waste Water: Focusing on the Analysis of Levelized Cost of Energy(LCOE))

  • 남태섭;이관영;김경남
    • 에너지공학
    • /
    • 제25권1호
    • /
    • pp.29-42
    • /
    • 2016
  • 본 연구는 최근 정부의 에너지신산업 정책 중 하나인 발전소 온배수열 활용사업의 경제성을 분석하고, 동 사업의 활성화를 위한 정부의 경제적 유인 제도를 재구성하였다. LCOE 산출방법을 이용하여 발전소 온배수열 시스템의 경제성을 분석한 결과 현 수준에서는 기름보일러, 바이오매스, 발전소 보조증기보다 LCOE값이 높지만 지열 시스템과는 유사한 것으로 나타났다. 또한 온배수열 시스템의 LCOE 구성요인의 민감도를 측정한 결과, 열공급 거리에 가장 민감하게 반응하는 것으로 나타났다. 따라서 온배수열 활용사업을 확대시키기 위한 정부의 경제적 유인제도 구성 시 REC 가중치를 열공급 거리별로 차등 적용하는 것이 필요한 것으로 분석되었다.

사회적 할인율을 고려한 국내육상풍력발전 단지의 LCOE 분석 (Analysis of LCOE for Korean Onshore Wind Farm Considering Social Discount Rate)

  • 이건우;고경남
    • 한국태양에너지학회 논문집
    • /
    • 제40권1호
    • /
    • pp.1-13
    • /
    • 2020
  • A study on estimation of the Levelized Cost of Energy (LCOE) was conducted for the Korean onshore wind farms. The LCOE was estimated on the basis of the actual wind farm data from Data Analysis, Retrieval Transfer system (DART) run by Financial Supervisory Service. Recently, social discount rate of Korea dropped from 5.5% to 4.5%, which was taken into account for this study. The onshore wind farms studied accounted for 42% of all the onshore wind farms of South Korea. Capital Expenditure (CapEx) and Operation Expenditure (OpEx) were calculated from the actual data, while Capacity Factors (CFs) were obtained from the wind farms of five provinces. Their distributions were estimated using Maximum Likelihood Estimation method, and then Monte Carlo Simulation (MCS) was performed for estimating LCOE, Levelized Fixed Cost (LFC), and Levelized Variable Cost (LVC). As a result, the LCOEs at the two discount rates, 4.5 and 5.5%, were 142 and 152 $/MWh, respectively, which were lower than that of financially viable onshore wind project of Korea. The 1% drop of social discount rate was estimated to result in a 10 $/MWh decrease in LCOE and a 4 $/MWh in LFC, which can be an advantage for wind project investors.

국내에서 운영 중인 국산과 외국산 육상풍력발전기의 발전원가 분석 (Analysis of LCOE for Korean and Foreign Onshore Wind Turbines in Operation in Korea)

  • 이건우;고경남
    • 풍력에너지저널
    • /
    • 제14권3호
    • /
    • pp.54-60
    • /
    • 2023
  • In order to reveal the levelized cost of energy (LCOE) of Korean and foreign wind turbines, a study was conducted for Korean onshore wind farms. Actual CapEx and OpEx data were obtained from audit reports for 26 onshore wind farms corresponding to 53.87 percent of the total onshore wind farms in Korea in the Data Analysis, Retrieval Transfer (DART) system. In addition, capacity factor (CF) data were calculated from data provided by Statistics Korea. Random numbers were generated from distributions that were fitted by the datasets, which were used as input data to perform a Monte Carlo simulation (MCS). The levelized fixed cost (LFC) and the levelized variable cost (LVC) were calculated from distributions of the CapEx, the OpEx and the CF. As a result, the LCOEs of the analyzed total Korean wind farms, and Korean and foreign wind turbines were 147, 148, and 146 USD/MWh, respectively. The averaged LCOE of Korea was estimated to be 4 USD/MWh lower than that of Japan, while it was much higher than German and global averages.

해상풍력 지지구조물 형식 및 시공 방법에 따른 서남해 해상풍력실증단지의 균등화발전비용 비교 (Comparison of LCOE of the Southwest Offshore Wind Farm According to Types and Construction Methods of Supporting Structures)

  • 윤서호;김선빈;윤길림;이진학
    • 한국해안·해양공학회논문집
    • /
    • 제35권3호
    • /
    • pp.57-66
    • /
    • 2023
  • 본 논문에서는 해상풍력발전단지의 경제성을 파악하고자 발전단가 측면에서 해상풍력 지지구조물 형식 및 시공 방법에 따른 균등화발전비용(levelized cost of energy, LCOE)의 차이를 분석하고 LCOE의 주요 구성 요소에 따른 민감도 분석을 실시하였다. 연구대상 현장으로 국내 서남해 해상풍력실증단지를 선정하였으며, 설치 기수에 따른 공사비를 분석하였다. LCOE 민감도 분석 결과 설비이용률, 터빈 관련 비용, 가중평균자본비용 그리고 BOS(balance of system) 관련 비용의 순서로 LCOE에 대한 민감도가 높은 것으로 나타났다. 아울러 국내 해상풍력 지지구조물로 주로 적용되었던 포스트파일링(post-piling) 재킷 공법을 기본안으로 선정하여 공사비를 산출한 후, 시공 방법을 프리파일링(pre-piling)으로 변경한 재킷 공법과 트라이포드(tripod) 공법의 초기투자비용을 비교하였다. 그에 따른 LCOE를 분석한 결과, 프리파일링 재킷 공법의 경우 고가의 템플릿이 필요하지만, 강재 소모량이 적고, 설치규모가 대형화할수록 시공 기간이 단축되어 전체 공사비 및 LCOE가 낮아지며 경제성이 향상되는 것을 확인하였다.

한국 태양광발전사업의 에너지균등화비용(LCOE) 추정: 재무적투자자 참여사업을 대상으로 (Estimation of LCOE for Korean PV Projects : For the Ones that Financial Investors Participated in)

  • 김영경;장병만
    • 신재생에너지
    • /
    • 제8권3호
    • /
    • pp.23-29
    • /
    • 2012
  • LCOE of 11 Korean PV projects, total capacity of 44 MW, were calculated for each project being larger than 1 MW respectively. 9 out of 11 projects were constructed in 2008 under FIT scheme revealed that average LCOE is 600 Korean Won per kilowatt-hour and it becomes reduced to 348 Korean Won per kilowatt-hour for 2 projects that are constructed under RPS scheme in 2012. During the period between 2008 and 2012, installation cost per megawatt became 55% of 2008 value with operation and maintenance cost lowered to 80% while LCOE became only 58% due to reduced project size and lower irradiation for later projects. However, it is found that the ratio of LCOE / unit installation cost looks relatively constant, so that it can be used as an auxiliary parameter to gauge learning effect of BOS portion of a PV project.

울산 앞바다 8 MW급 부유식 해상풍력터빈의 LCOE 연구 (Evaluation Study of LCOE for 8 MW Offshore Floating Wind Turbine in Ulsan Region)

  • 이동훈;임희창
    • 풍력에너지저널
    • /
    • 제14권1호
    • /
    • pp.5-13
    • /
    • 2023
  • The commercialization has been of great importance to the clean energy research sector for investing the wind farm development, but it would be difficult to reach a social consensus on the need to expand the economic feasibility of renewable energy due to the lack of reliable and continuous information on levelized cost of Energy (LCOE). Regarding this fact, this paper presents the evaluation of LCOE, focusing on Ulsan offshore region targeting to build the first floating offshore wind farm. Energy production is estimated by the meteorology data combined with the Leanwind Project power curve of an exemplar wind turbine. This work aims to analyze the costs of the Capex depending on site-specific variables. The cost of final LCOE was estimated by using Monte-Carlo method, and it became an average range 297,090 KRW/MWh, a minimum of 251,080 KRW/MWh, and a maximum of 341,910 KRW/MWh. In the year 2021, the SMP (system marginal price) and 4.5 REC (renewable energy certificate) can be paid if 1 MWh of electricity is generated by renewable energy. Considering current SMP and REC price, the floating platform industry, which can earn around 502,000 KRW/MWh, can be finally estimated highly competitive in the Korean market.

Prospects and Economics of Offshore Wind Turbine Systems

  • Pham, Thi Quynh Mai;Im, Sungwoo;Choung, Joonmo
    • 한국해양공학회지
    • /
    • 제35권5호
    • /
    • pp.382-392
    • /
    • 2021
  • In recent years, floating offshore wind turbines have attracted more attention as a new renewable energy resource while bottom-fixed offshore wind turbines reach their limit of water depth. Various projects have been proposed with the rapid increase in installed floating wind power capacity, but the economic aspect remains as a biggest issue. To figure out sensible approaches for saving costs, a comparison analysis of the levelized cost of electricity (LCOE) between floating and bottom-fixed offshore wind turbines was carried out. The LCOE was reviewed from a social perspective and a cost breakdown and a literature review analysis were used to itemize the costs into its various components in each level of power plant and system integration. The results show that the highest proportion in capital expenditure of a floating offshore wind turbine results in the substructure part, which is the main difference from a bottom-fixed wind turbine. A floating offshore wind turbine was found to have several advantages over a bottom-fixed wind turbine. Although a similarity in operation and maintenance cost structure is revealed, a floating wind turbine still has the benefit of being able to be maintained at a seaport. After emphasizing the cost-reduction advantages of a floating wind turbine, its LCOE outlook is provided to give a brief overview in the following years. Finally, some estimated cost drivers, such as economics of scale, wind turbine rating, a floater with mooring system, and grid connection cost, are outlined as proposals for floating wind LCOE reduction.

태양광 대량보급 시대의 기술개발 (Technology Development in the Era of Photovoltaic Mass Supply)

  • 조은철;송재천;조영현;이준신
    • Current Photovoltaic Research
    • /
    • 제6권4호
    • /
    • pp.124-132
    • /
    • 2018
  • The Korean electric power supply plan was prepared by greatly enhancing the environmental and safety with considering the economical efficiency of the electric equipment, the impact on the environment and the public safety. As a result, the fossil energy-based power generation sector is accelerating the paradigm shift to eco-friendly energy such as solar power and wind. Also the solar power industry is expected to grow into a super large-sized industry by converging the energy storage and electric vehicle industry. Generally, a levelized cost of electricity (LCOE) is used to calculate the power generation cost for different generation power generation efficiency, operating cost, and life span. In this paper, we have studied the future research and development direction of photovoltaic technology development for the era of massive utilization of photovoltaic solar power, and have studied the LCOE of major countries including China, USA, Germany, Japan and Korea. Finally we have reviewed USA and Japan research programs to reduce the LCOE.

액화 공기 에너지 저장 기술(LAES)의 경제성 분석 (Economic Evaluation of Liquid Air Energy Storage (LAES) System)

  • 고아름;박성호;류주열;박종포
    • 신재생에너지
    • /
    • 제16권1호
    • /
    • pp.1-14
    • /
    • 2020
  • Liquid air energy storage (LAES) using gas liquefaction has attracted considerable attention because of its mature technology, high energy density, few geographical constraints, and long life span. On the other hand, LAES has not yet been commercialized and is being developed recently. Therefore, few studies have performed an economic analysis of LAES. In this study, the levelized cost of electricity was calculated and compared with that of other energy storage systems. As a result, the levelized cost of electricity of LAES was $371/MWh. This is approximately $292/MWh, $159/MWh, $118/MWh, and $3/MWh less than that of the LiCd battery, VRFB battery, Lead-acid battery, and NaS battery. In addition, the cost was approximately $62/MWh and $195/MWh more than that of Fe-Cr flow battery and PHS. Sensitivity analysis of the levelized cost of electricity according to the main economic factors was performed, and economic uncertainty analysis was performed through a Monte-Carlo simulation. The cumulative probability curve showed the levelized cost of electricity of LAES, reflecting price fluctuations in the air compressor cost, electricity cost, and standing reserve hourly fee.

신재생 에너지와 기존 발전기술과의 투자리스크 요인별 민감도 비교 (The Sensitivity Comparison of Each Risk Factors Analysis on Renewable Energy and Other Generating Technologies)

  • 고경호;박세익
    • 신재생에너지
    • /
    • 제7권4호
    • /
    • pp.10-17
    • /
    • 2011
  • Recently, electricity industry is facing high market uncertainty which has ever had and which increase risks in power market. In this study, we analyze risk factors such as discount rates, initial investment (overnight cost), plant factor, fuel cost, carbon price, etc, for the perspective of investor. For the analysis of risk factors, we used LCOE method. The results of this study show that renewable energy is more affected by plant factor and overnight cost than other risk factors. First, Renewable energy has higher proportion of overnight cost in the total investment than that of other technologies. Second, renewable energy is free of fuel cost and carbon price so plant factor is the most important factor, in other words, competitiveness of renewable energy depends on plant factor. Furthermore, we conducted economic feasibility of wind power and PV in domestic case study. The minimum requirement condition to get profitability is that plant factor 15% and overnight cost \6,000,000/kW and 26%, \2,200,000/kW for PV and Wind Power, respectively.