• Title/Summary/Keyword: LCD waste

Search Result 53, Processing Time 0.023 seconds

A predictive model for compressive strength of waste LCD glass concrete by nonlinear-multivariate regression

  • Wang, C.C.;Chen, T.T.;Wang, H.Y.;Huang, Chi
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.531-545
    • /
    • 2014
  • The purpose of this paper is to develop a prediction model for the compressive strength of waste LCD glass applied in concrete by analyzing a series of laboratory test results, which were obtained in our previous study. The hyperbolic function was used to perform the nonlinear-multivariate regression analysis of the compressive strength prediction model with the following parameters: water-binder ratio w/b, curing age t, and waste glass content G. According to the relative regression analysis, the compressive strength prediction model is developed. The calculated results are in accord with the laboratory measured data, which are the concrete compressive strengths of different mix proportions. In addition, a coefficient of determination $R^2$ value between 0.93 and 0.96 and a mean absolute percentage error MAPE between 5.4% and 8.4% were obtained by regression analysis using the predicted compressive analysis value, and the test results are also excellent. Therefore, the predicted results for compressive strength are highly accurate for waste LCD glass applied in concrete. Additionally, this predicted model exhibits a good predictive capacity when employed to calculate the compressive strength of washed glass sand concrete.

Decontamination of Mercury Contained in CCFLs (Cold Cathode Fluorescence Light) Disassembled from Waste LCDs (Liquid Crystal Display) (폐 LCD (Liquid Crystal Display) 해체 후 분리된 CCFL (Cold Cathode Fluorescence Light) 내 수은의 건식 제거 공정)

  • Park, Jae Layng;Lee, Sungkyu;Kang, Leeseung;Lee, Chan Gi;Cho, Sung-Su;Hong, Myung Hwan;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.23 no.2
    • /
    • pp.61-70
    • /
    • 2014
  • LCD televisions and monitors use cold cathode fluorescence lamps (CCFLs) to illuminate the screen. Most CCFLs contain mercury and they have to be carefully handled at the end of their lives as per minimum treatment standards under the Waste Electrical and Electronic Equipment (WEEE) and Restriction of Hazardous Substances (RoHS) directives. CCFLs were carefully separated from mold frames of waste LCD units for primary decontamination of mercury/fluorescent compound mixture using CCFL decontamination system designed and fabricated in the present research. Residual mercury was further removed by employing a pyro-process, where crushed CCFL tubes transferred from primary decontamination process were subject to heat treatment at $550^{\circ}C$ in a box furnace: more than 99% of mercury was removable from waste CCFLs.

Study on the Quality Characteristics of High-strength Concrete Using LCD Industrial Waste (LCD 산업부산물을 이용한 고강도 콘크리트의 품질 특성에 관한 연구)

  • Kim, Dong-Jin;Park, Seung-Hee;Choi, Sung;Han, Yang-Su
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.650-657
    • /
    • 2021
  • Alkali activators that stimulate mineral compounds are expensive materials, but in order to replace industrial products of high alkali in gredien ts, both product an d econ omic feasibility must be satisfied. In this study, alkali in dustrial waste(LW) from the LCD man ufacturin g process were used for the purpose of alkali active reaction of GGBFS for high stren gth concrete over 50MPa. Concrete mixed with LW had reduced workability, but it had the characteristic of increasing compressive strength. Analysis using ACI 209 Compressive Strength Model Equation was made to compare the changes in strength coefficients according to LW mixing. The durability test of concrete, such as Chloride Penetration Resistance and carbonation resistance, also showed excellent performance. In the Adiabatic temperature rise test results, the concrete mixed with LW had the effect of accelerating the initial hydration heat. However, the final Adiabatic temperature rise was not significantly affected by the mixing of LW.

Characteristics of Indium Dissolution of Waste LCD Panel Powders Fabricated by High Energy Ball Milling (HEBM) Process with Milling Time (고에너지 밀링으로 제조된 폐디스플레이 패널 분말의 밀링시간에 따른 인듐 용출특성)

  • Kim, Hyo-Seob;Sung, Jun-Je;Lee, Cheol-Hee;Hong, Hyun-Seon;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.378-384
    • /
    • 2011
  • In this research, the indium dissolution properties of the waste LCD panel powders were investigated as a function of milling time fabricated by high-energy ball milling (HEBM) process. The particle morphology of waste LCD panel powders changed from sharp and irregular shape of initial cullet to spherical shape with an increase in milling time. The particle size quickly decreased to 15 ${\mu}m$ until the first minute, then decreased gradually about 6 ${\mu}m$ with presence of agglomerated particles after 5 minutes, which increased gradually reaching a uniform size of 13 ${\mu}m$ consist of agglomerated particles after 30 minutes. The glass recovery, after dissolution, was over 99% at initial cullet, which decreased to 90.1 and 78.6% with increasing milling time of 1 and 30 minute respectively, due to a loss in remaining powder of the surface ball and jar, as well as the filter paper. The dissolution amount of indium out of the initial cullet was 208 ppm before milling, turning into 223 ppm for the mechanically milled powder after 1 minute, and nearly 146~125 ppm with further increase in milling time because of the reaction surface decrease of powders due to agglomeration. With this process, maximum dissolving indium amount (223 ppm) could be achieved at a particle size of 15 ${\mu}m$ with 1 minute of milling.

Physical and Chemical Properties of Waste Glass as Feed Materials for the Production of Foamed Glass (발포유리 원료로서 폐 유리의 물리 화학적 특성)

  • Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.440-448
    • /
    • 2005
  • Physical and chemical properties of waste glass, such as bottle glass, plate glass, and LCD glass were investigated to test the feasibility of starting materials for the production of high quality foamed glass for insulating grade construction material without pre-treatments such as cleaning, and waste removals. For this purpose, chemical analysis, thermal analysis, crystalline analysis, and rheological analysis including viscosity were proceeded and the preparation of foamed glass under the qualitative conditions obtained from these various analysis was also attempted. Overall results of various analysis and investigations for these waste glass showed that waste bottle glass and plate glass have high possivility of use as feed materials for the production of foamed glass.

Properties of recycled green building materials applied in lightweight aggregate concrete

  • Wang, Her-Yung;Hsiao, Darn-Horng;Wang, Shi-Yang
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • This study uses recycled green building materials based on a Taiwan-made recycled mineral admixture (including fly ash, slag, glass sand and rubber powder) as replacements for fine aggregates in concrete and tests the properties of the resulting mixtures. Fine aggregate contents of 5% and 10% were replaced by waste LCD glass sand and waste tire rubber powder, respectively. According to ACI concrete-mixture design, the above materials were mixed into lightweight aggregate concrete at a constant water-to-binder ratio (W/B = 0.4). Hardening (mechanical), non-destructive and durability tests were then performed at curing ages of 7, 28, 56 and 91 days and the engineering properties were studied. The results of these experiments showed that, although they vary with the type of recycling green building material added, the slumps of these admixtures meet design requirements. Lightweight aggregate yields better hardened properties than normal-weight concrete, indicating that green building materials can be successfully applied in lightweight aggregate concrete, enabling an increase in the use of green building materials, the improved utilization of waste resources, and environmental protection. In addition to representing an important part of a "sustainable cycle of development", green building materials represent a beneficial reutilization of waste resources.

Process Simulation for Recovery and Recycling of Waste Chemicals Produced from Semiconductor and LCD Photo Processes (반도체 및 LCD photo 공정에서 발생되는 폐chemical의 재자원화를 위한 공정모사)

  • 유홍진;이윤배;신재식;한성록
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.05a
    • /
    • pp.127-129
    • /
    • 2002
  • 본 연구는 반도체 및 LCD Photo 공정에서 발생되는 폐액의 재자원화를 위한 공정설계 data와 재자원화 기술의 성능향상을 위한 기초 자료를 제공하는데 있다. 재자원화 증류탑의 설계를 위한 공정모사를 통하여 공정폐액 재자원화의 최적조건을 설계할 수 있는 기초자료를 제안하였다.

Separation of Nitric Acid and Acetic Acid from the Waste Acid in LCD Etching Process (LCD 식각폐액으로부터 질산과 초산의 분리)

  • Chun, Hee-Dong;Roh, Yu-Mi;Park, Sung-Kuk;Kim, Ju-Han;Shin, Chang-Hoon;Kim, Ju-Yup;Ahn, Jae-Woo
    • Clean Technology
    • /
    • v.14 no.2
    • /
    • pp.123-128
    • /
    • 2008
  • The waste solution, which was discharged from the recovery process of LCD etching solution, consists of 15 wt% nitric acid and 20 wt% acetic acid. In this study, it was conducted to separate acid individually from the mixed acid by vacuum evaporation under -760 mmHg gauge and at $40^{\circ}C$. We have investigated evaporation behavior of acid as a function of temperature. There have been problems that tiny amount of nitric acid were evaporated simultaneously above $33^{\circ}C$. Thus, efforts were conducted to recover acetic acid by vacuum evaporation with adding $H_2O$, waste mixed acid and 20 g/L NaOH for a curb on evaporation of nitric acid. By adding $H_2O$, evaporation of nitric acid was reduced from 7% to 0.78%. However, it was reduced from 7% to 0.25% by adding mixed acid. In view of the results achieved so far, we may expect to separate the etching solution individually by controlling vacuum conditions.

  • PDF