DOI QR코드

DOI QR Code

Characteristics of Indium Dissolution of Waste LCD Panel Powders Fabricated by High Energy Ball Milling (HEBM) Process with Milling Time

고에너지 밀링으로 제조된 폐디스플레이 패널 분말의 밀링시간에 따른 인듐 용출특성

  • Kim, Hyo-Seob (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University) ;
  • Sung, Jun-Je (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University) ;
  • Lee, Cheol-Hee (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University) ;
  • Hong, Hyun-Seon (Plant Engineering Center, Institute for Advanced Engineering(IAE)) ;
  • Hong, Soon-Jik (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University)
  • 김효섭 (공주대학교 신소재공학과) ;
  • 성준제 (공주대학교 신소재공학과) ;
  • 이철희 (공주대학교 신소재공학과) ;
  • 홍현선 (고등기술연구원 플랜트엔지니어링센타) ;
  • 홍순직 (공주대학교 신소재공학과)
  • Received : 2011.06.13
  • Accepted : 2011.08.01
  • Published : 2011.08.28

Abstract

In this research, the indium dissolution properties of the waste LCD panel powders were investigated as a function of milling time fabricated by high-energy ball milling (HEBM) process. The particle morphology of waste LCD panel powders changed from sharp and irregular shape of initial cullet to spherical shape with an increase in milling time. The particle size quickly decreased to 15 ${\mu}m$ until the first minute, then decreased gradually about 6 ${\mu}m$ with presence of agglomerated particles after 5 minutes, which increased gradually reaching a uniform size of 13 ${\mu}m$ consist of agglomerated particles after 30 minutes. The glass recovery, after dissolution, was over 99% at initial cullet, which decreased to 90.1 and 78.6% with increasing milling time of 1 and 30 minute respectively, due to a loss in remaining powder of the surface ball and jar, as well as the filter paper. The dissolution amount of indium out of the initial cullet was 208 ppm before milling, turning into 223 ppm for the mechanically milled powder after 1 minute, and nearly 146~125 ppm with further increase in milling time because of the reaction surface decrease of powders due to agglomeration. With this process, maximum dissolving indium amount (223 ppm) could be achieved at a particle size of 15 ${\mu}m$ with 1 minute of milling.

Keywords

References

  1. NBSC (National Bureau of Statistics of China), 2007. China Statistical Yearbook 2006. Beijing, China.
  2. J. C. Yoo: Global Display Market Trend, 2010 IT industry Prospect Conference, Seoul, Korea, 16-17th Nov. 2009.
  3. R&DBIZ: Electronics Information Center (2005).
  4. J. H. Choi: KDB Reaserch Institute (2009) 83.
  5. H. S. Hong, M. S. Kong, S. K. Lee and H. Y. Kang: Korean Industrial Chemistry News, 13 (2010) 10 (Korean).
  6. J. Li, S. Gao, H. Duan and L. Liu: Waste Manage., 29 (2009) 2003.
  7. H. M. Lee, H. S. Hong, H. C. Jung, H. Y. Kang and S. J. Hong: J. Korean Powder. Metall. Inst., 17 (2010) 88 (Korean). https://doi.org/10.4150/KPMI.2010.17.2.088
  8. J. Chen, J. S. Yao, Y. Y. Zhou, Z. F. Chen, X. Wang and J. W. Huang: Chinese J. Rare Metals, 27 (2003) 101.
  9. W. L. chou and Y. H. Huang: J. Hazard. Mater., 172 (2009) 46. https://doi.org/10.1016/j.jhazmat.2009.06.119
  10. S. J. Hsieh, C. C. Chen and W. C. Say: Mater. Sci. Eng. B., 158 (2009) 82. https://doi.org/10.1016/j.mseb.2009.01.019
  11. H. Takamichi and M. Toshiaki: Sharp Technical J., 92 (2005) 17.
  12. Densho Engineering Co Ltd: Japan, No. 2008-255387 (2008).
  13. A. C. Tolcin: Indium 2008. U.S. Geological Survey.
  14. A. C. Tolcin: Indium 2009. U.S. Geological Survey.
  15. Sami Virolainen, Don Ibana and Erkki Paatero: Hydrometallurgy, 107 (2011) 56. https://doi.org/10.1016/j.hydromet.2011.01.005
  16. M. S. Steiner: ReLCD-Workshop, (2006).
  17. C. Lee: Knowledge Bridge, 45 (2004) 2.
  18. H. Y. Kang and J. M. Schoenung: J. Hazard. Mater., 137 (2006) 1165. https://doi.org/10.1016/j.jhazmat.2006.03.062
  19. J. Li, B. Tian, T. Liu, X. Wen and Seich Honda: J. Mater. Cycles Waste Manag., 8 (2006) 13. https://doi.org/10.1007/s10163-005-0144-3
  20. http://sharp-world.com/corporate/eco/environment_and_sharp/examples/sgt_Indium.html, Technology to Recycle Indium from Scrap LCD Panels, Sharp.
  21. M. Turner and D. Callaghan: Computer Law and Security Report, 23 (2007) 73. https://doi.org/10.1016/j.clsr.2006.11.007
  22. Kunihiko Takahashi, Atsushi Sasaki, Gjergj Dodbiba, Jin Sadaki, Nobuaki Sato and Toyohisa Fujita: Metall. Trans. A, 40 (2009) 891. https://doi.org/10.1007/s11661-009-9786-4
  23. K.-S. Park, Wakao Sato, Guido Grause, Tomohito Kameda and Toshiaki Yoshioka: Themochimica Acta 493 (2009) 105. https://doi.org/10.1016/j.tca.2009.03.003
  24. Jinhui Li, Song Gao, Huabo Duan and Lili Liu: Waste Management, 29 (2009) 2033. https://doi.org/10.1016/j.wasman.2008.12.013
  25. Y. R. Uhm, J. W. Kim, J. W. Jung and C. K. Rhee: J. Korean Powder. Metall. Inst., 16 (2009) 110 (Korean). https://doi.org/10.4150/KPMI.2009.16.2.110
  26. J. W. Song, H. S. Kim, H. M. Kim, T. S. Kim and S. J. Hong: J. Korean Powder Metall. Inst., 17 (2010) 302 (Korean). https://doi.org/10.4150/KPMI.2010.17.4.302
  27. King Contry Solid Waste Division: Flat Panel Displays: End of Life Management Report (2007).
  28. C.-T. Lee, J. Lee, M. Jang and S. Lee: J. Korean Ind. Eng. Chem., 20 (2009) 266 (Korean).
  29. Yuhu Li, Zhihong Liu, Qihou Li, Zhiyong Liu and Li Zeng: Hydrometallurgy 105 (2011) 207. https://doi.org/10.1016/j.hydromet.2010.09.006
  30. Melgardt M. de Villiers: Int. J. Pharm., 136 (1996) 175. https://doi.org/10.1016/0378-5173(95)04380-2

Cited by

  1. The Effect of Milling Conditions for Dissolution Efficiency of Valuable Metals from PDP Waste Panels vol.20, pp.2, 2013, https://doi.org/10.4150/KPMI.2013.20.2.107