• Title/Summary/Keyword: LCD Process

Search Result 634, Processing Time 0.03 seconds

New High Stability Excimer Laser for LTPS Manufacturing

  • Herbst, Ludolf;Paetzel, Rainer;Simon, Frank;Fechner, Burkhard
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.540-543
    • /
    • 2006
  • LTPS TFT backplanes for AM OLED displays have advantages in regard to reliability and performance compared to TFT backplanes based on amorphous silicon. However, the requirements for homogeneous laser crystallization during LTPS process are much higher than for LCD backplanes. Most important is the energy stability of the laser source. In this paper we describe a new excimer laser which meets the requirements of LTPS manufacturing process with high homogeneity.

  • PDF

In-line Automatic defect repair method for TFT-LCD Production

  • Arai, Takeshi;Nakasu, N.;Yoshimura, K.;Edamura, T.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1036-1039
    • /
    • 2009
  • We have developed an automated circuit defect repair method. We focused on the resist patterns on the circuit material layer of TFT substrates before the etching process. In this paper, we report on the repair method that utilizes the syringe system and the stability of the open defect repair process.

  • PDF

Low Temperature Flip Chip Bonding Process

  • Kim, Young-Ho
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.09a
    • /
    • pp.253-257
    • /
    • 2003
  • The low temperature flip chip technique is applied to the package of the temperature-sensitive devices for LCD systems and image sensors since the high temperature process degrades the polymer materials in their devices. We will introduce the various low temperature flip chip bonding techniques; a conventional flip chip technique using eutectic Bi-Sn (mp: $138^{\circ}C$) or eutectic In-Ag (mp: $141^{\circ}C$) solders, a direct bump-to-bump bonding technique using solder bumps, and a low temperature bonding technique using low temperature solder pads.

  • PDF

Development of a predictive model of the limiting current density of an electrodialysis process using response surface methodology

  • Ali, Mourad Ben Sik;Hamrouni, Bechir
    • Membrane and Water Treatment
    • /
    • v.7 no.2
    • /
    • pp.127-141
    • /
    • 2016
  • Electrodialysis (ED) is known to be a useful membrane process for desalination, concentration, separation, and purification in many fields. In this process, it is desirable to work at high current density in order to achieve fast desalination with the lowest possible effective membrane area. In practice, however, operating currents are restricted by the occurrence of concentration polarization phenomena. Many studies showed the occurrence of a limiting current density (LCD). The limiting current density in the electrodialysis process is an important parameter which determines the electrical resistance and the current utilization. Therefore, its reliable determination is required for designing an efficient electrodialysis plant. The purpose of this study is the development of a predictive model of the limiting current density in an electrodialysis process using response surface methodology (RSM). A two-factor central composite design (CCD) of RSM was used to analyze the effect of operation conditions (the initial salt concentration (C) and the linear flow velocity of solution to be treated (u)) on the limiting current density and to establish a regression model. All experiments were carried out on synthetic brackish water solutions using a laboratory scale electrodialysis cell. The limiting current density for each experiment was determined using the Cowan-Brown method. A suitable regression model for predicting LCD within the ranges of variables used was developed based on experimental results. The proposed mathematical quadratic model was simple. Its quality was evaluated by regression analysis and by the Analysis Of Variance, popularly known as the ANOVA.

Liquid Crystal Alignment Effect on Polyimide Surface by Ion-beam Irradiation (이온빔을 이용한 폴리이미드 표면의 액정배향효과)

  • Park, Hong-Gyu;Oh, Byeong-Yun;Kim, Young-Hwan;Kim, Byoung-Yong;Han, Jeong-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.330-330
    • /
    • 2008
  • It is widely investigated to liquid crystal (LC) alignment using non-contact alignment method such as ion-beam (IB) irradiation, UV alignment, and oblique deposition. Because conventional rubbing method has some drawbacks. These include defects from dust and electrostatic charges and rubbing scratch during rubbing process. In addition, rubbing method needs additional process to remove these defects. Therefore rubbing-free methods like ion-beam irradiation are strongly required. We studied LC alignment effect on poly imide surface by IB irradiation and electro-optical (EO) characteristics of twisted nematic liquid crystal display (TN-LCD). In this experiment, a good uniform alignment of the nematic liquid crystal (NLC) with the ion-beam exposure on the polyimide (PI) (SE-150 from Nissan Chemical) surface was observed. We also achieved low pretilt angle as a function of ion-beam irradiation intensity. In addition, it can be obtained the good EO properties of the IB-aligned TN-LCD on PI surface. Some other experiments results and discussion will be included in the poster.

  • PDF

Design of Alignment Mark Stamper Module for LED Post-Processing

  • Hwang, Donghyun;Sohn, Young W.;Seol, Tae-ho;Jeon, YongHo;Lee, Moon G.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.155-159
    • /
    • 2015
  • Light emitting devices (LEDs) are widely used in the liquid crystal display (LCD) industry, especially for LCD back light units. Therefore, much research has been performed to minimize manufacturing costs. However, the current process does not process LED chips from broken substrates even though the substrate is expensive sapphire wafer. This is because the broken substrates lose their alignment marks. After pre-processing, LED dies are glued onto blue tape to continue post-processing. If auxiliary alignment marks are stamped on the blue tape, post-processing can be performed using some of the LED dies from broken substrates. In this paper, a novel stamper module that can stamp the alignment mark on the blue tape is proposed, designed, and fabricated. In testing, the stamper was reliable even after a few hundred stamps. The module can position the stamp and apply the pattern effectively. By using this module, the LED industry can reduce manufacturing costs.

Recovery of Tin from Tin Oxide Resulted from Glass Manufacturing Process by Pyrometallurgy (유리생산공정 폐주석산화물에서 건식제련에 의한 주석회수기술)

  • Lee, Sang-Ro;Kim, Sang-Yeol;Lee, Man-Seung;Park, Man-Bok
    • Resources Recycling
    • /
    • v.24 no.2
    • /
    • pp.23-28
    • /
    • 2015
  • Most of the domestic need for tin rely on imports. In this work, a pyrometallurgical process was investigated to recover pure tin from the tin oxides in tin bath which results from the production of flat glass and LCD panel. From the results on the effect of reaction temperature, the highest recovery percentage of tin was obtained at $1350^{\circ}C$. The recovery percentage of tin was improved to 88% by employing the first and second smelting step. Electrorefining of the crude tin thus obtained led to pure tin with purity higher than 99.9%.

Robust Design of Cellular Phone with Requirements Analysis for Silver Generation (실버세대 요구분석을 통한 휴대전화 강건 최적 설계)

  • Cho, Guk-Hyun;Noh, Kyung-Ho;Kang, Ho-Jung;Park, Hyeong-Uk;Lee, Jae-Woo;Byun, Yung-Hwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.17-26
    • /
    • 2007
  • This paper presents a design methodology for developing a new cellular phone configuration. A case study is performed using robust design process to satisfy predicted needs from new customers under the requirement analysis process. Diagrams and selection matrices are drawn by using several useful system engineering methods. This paper presents the optimal LCD panel size of cellular phone. A structural analysis has been carried out to compare the deformation of LCD panel thickness at specific conditions by using ANSYS application tool. This entire design result can support the configuration and quality improvements for a new product for new customers.

  • PDF

A study on Safety Management and Control in Wet-Etching Process for H2O2 Reactions (습식 에칭 공정에서의 과산화수소 이상반응에 대한 안전 대책 및 제어에 관한 연구)

  • Yoo, Heung-Ryol;Son, Yung-Deug
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.650-656
    • /
    • 2018
  • The TFT-LCD industry is a kind of large-scale industrial Giant Microelectronics device industry and has a similar semiconductor process technology. Wet etching forms a relatively large proportion of the entire TFT process, but the number of published research papers on this topic is limited. The main reason for this is that the components of the etchant, in which the reaction takes place, are confidential and rarely publicized. Aluminum (Al) and copper (Cu), which have been used in recent years for the manufacture of large area LCDs, are very difficult materials to process using wet etching. Cu, a low-resistance material, can only be used in the wet etching process, and is used as a substitute for Al due to its high speed etching, low failure rate, and low power consumption. Further, the abnormal reaction of hydrogen peroxide ($H_2O_2$), which is used as an etching solution, requires additional piping and electrical safety devices. This paper proposes a method of minimizing the damage to the plant in the case of adverse reactions, though it cannot limit the adverse reaction of hydrogen peroxide. In recent years, there have been many cases in which aluminum etching equipment has been changed to copper. This paper presents a countermeasure against abnormal reactions by implementing safety PLC with a high safety grade.

Small Electrode Ring Forming by Multi-Forming Process (멀티 성형 가공법을 활용한 전극용 소형 링 성형)

  • Yoon, Il-Chae;Ko, Tae-Jo;Lee, Chun;Kim, Hui-Sul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.38-45
    • /
    • 2009
  • Recently, LCD Backlight Unit is being replaced from cold cathode fluorescent lamp(CCFL) to external electrode fluorescent lamp(EEFL) because the EEFL has high energy efficiency and long life. Also, it can reduce energy consumption and weight. So far, external electrode ring for EEFL is produced by sheet metal press forming process. Therefore it had low precision and much material loss. To solve these problems, Multi-Forming process that has five step forming process was invented. However, low productivity is another barrier. Product speed that is controlled by the rotational speed cannot be increased due to the unsatisfied design specification. The reason is that the gap between rolled two edge parts of the sheet plate is tightly inspected. Regarding this factor, the understanding of forming behavior to each process is inevitable. This paper describes the CAE analysis of the multi-forming process by PAM-STAMP.

  • PDF