• Title/Summary/Keyword: LANDUSE

Search Result 348, Processing Time 0.026 seconds

Application of GIS for Runoff Simulation in Ungaged Basin(I): Selection of Soil Map and Landuse Map (미계측 유역의 유출모의를 위한 지리정보시스템의 응용(I) : 토양도 및 토지이용도의 선정)

  • Kim, Gyeong-Tak;Sim, Myeong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.2
    • /
    • pp.163-176
    • /
    • 1999
  • Hydrology-based topographical informations generated by GIS techniques could be changed according to the selection of base map, algorithm of extraction, and so on. The purpose of this paper is to investigate the variation of SCS CN extracted by GIS technique and to propose the effective strategy for applying GIS to the rainfall-runoff simulation in ungaged basin. For experimental implementation, GIS spatial data, such as reconnaissance soil map, detailed interpretative soil map, landuse planning map and remotely sensed data(Landsat TM), were collected and generated to calculate the amount of effective rainfall in Pyungchang river basin. In applying SCS Runoff Curve Number to the test basin, the hydrological attribute data were analyzed. In addition, the characteristics of runoff responses according to the selection of GIS spatial data for SCS CN were reviewed. This study shows the applicability of GIS techniques to runoff simulation in ungaged basin by comparing with the measured flood hydrograph. It has been found that the detained interpretative soil map and remote sensing data are appropriate for calculating of SCS CN.

  • PDF

Spatial and Temporal Variability of Water Quality in Geum-River Watershed and Their Influences by Landuse Pattern (금강 수계의 시.공간적 수질특성과 토지이용도의 영향)

  • Han, Jeong-Ho;Bae, Young-Ju;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.385-399
    • /
    • 2010
  • The objective of this study was to analyze long term temporal trends of water chemistry and spatial heterogeneity for 83 sampling sites of Geum-River watershed using water quality dataset during 2003~2007 (obtained from the Ministry of Environment, Korea). The water quality, based on multi-parameters of temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (TN), total phosphorus (TP), and electric conductivity (EC), largely varied depending on the landuse patterns, years and seasons. The watershed was classified into three different landuse types: forest stream (Fo), agricultural stream (Ag), and urban stream (Ur). Largest seasonal variabilities in most parameters occurred during the two months of July to August and these were closely associated with large spate of summer monsoon rain. Conductivity, used as a key indicator for an ionic dilution during rainy season, and nutrients of TN and TP had inverse functions of precipitation. BOD, COD decrease during the rainy season. Minimum values in the conductivity, TN, and TP were observed during the summer monsoon, indicating an ionic and nutrient dilution of river water by the rainwater. In contrast, major inputs of suspended solids (SS) occurred during the period of summer monsoon. The landuse patterns analyses, based on the variables of BOD, COD, TN, TP and SS, showed that the values were greater in the agricultural stream (Ag) than in the forest stream (Fo) and urban stream (Ur) and that water quality was worst in the urban stream (Ur). The overall dataset suggest that efficient water quality management, especially in Gap-Stream and Miho-Stream, which showed worst water quality is required along with some of urban stream (Ur), based on the analysis of landuse patterns.

Determination of Instreamflow Requirement for Upstream Urban Watershed Using SWAT Model (SWAT 모형을 이용한 도시하천 상류유역의 하천유지유량 산정방안)

  • Lee Kil-Seong;Chung Eun-Sung;Shin Mun-Ju;Kim Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.8 s.169
    • /
    • pp.703-716
    • /
    • 2006
  • The flow duration curves in the present and the ideal hydrologic cycle were derived using SWAT model. The present situation is the landuse and the groundwater withdrawal in the year of 2000 and the ideal situation is the landuse of 1975 and no groundwater withdrawal. These results were compared with the previous instream flow requirements which are the larger flow between the average drought flow and environmental control flow. As a result, the present and ideal drought flows of Ojeoncheon, Hakuicheon, Samseongcheon, and Sammakcheon, were the same and the drought flows of Samseongcheon and Sammakcheon were even zero since the baseflow is very little due to the small and mountainous watersheds. The previous instream flow requirement for the riverine function is also larger than the low flow of the ideal hydrologic cycle. The present method to set the instream flow requirement is not proper for the small mountainous watershed since it can be usually overestimated and drive the artificial measures to secure the streamflow Therefore, another method should be developed such as the low flow and the average flow between the drought flow and the low flow of the ideal hydrologic cycle using the proper hydrologic simulation model such as SWAT which can consider the landuse.

Strategy for Improving Forestland Classification System in Korea (산지이용구분제도의 개선방안 연구)

  • Park, Young-Kyu;Jeon, Jun-Heon;Roh, Hye-Jung
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.780-790
    • /
    • 2009
  • The objective of this study was to analyze 'Forestland Classification System' in Korea and to develop a strategy for its improvement. A survey was conducted in this study based on the Delphi technique, one of the interactive survey method relying on a panel of experts. The result indicated that the existing 'Forestland Classification System' was initiated for reasonable management of forestland, but now it turned into one of the most strict management restrictions. To improve forestland management in Korea, it was suggested to adopt 'Forest Function System' in this study. Moreover, to avoid indiscreet landuse conversion that might be occurred by substituting the 'Forest Function System' for the 'Forestland Classification System', it was suggested to adopt 'Forestland Conversion Propriety Assessment System'. In fact, landuse conversion has been regulated by the 'Environmental Impact Assessment System', but this system appeared inadequate to be applied to the forested area. Illegal acts for having permission of landuse conversion for reserved forests was another big issue in the forestland management. For example, alteration of the reserved status of forests or partition into patches smaller than the size limit has been attempted. Thus in this study, it was strongly recommended to take sanction against such illegal acts. In order to enhance the efficiency of forestland management, it was also suggested to integrate administrative agencies related to the landuse conversion or to take over the charge to local governments.

Analysis of Land Use Change within Four Major River Areas Using High-Resolution Air-Photographs: The Case of the Nakdong River Basin (고해상도 항공사진을 이용한 4대강 하천구역 내 토지이용변화 분석 - 낙동강 유역을 사례로)

  • Park, Soo-Kuk;Kim, Jin;Lee, Kil-Jae;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.4
    • /
    • pp.171-188
    • /
    • 2013
  • Landuse changes and cadastral information error categories in the four major river areas were analyzed for the use of policy data as cadastral re-arrangement of national and public lands would be required, using high-resolution air-photographs and cadastral maps before and after the river development. The study sites were the river areas of 40km around four dams of the Nakdong river where their landuses were changed most. As the results, national and public lands reached 79.9% of land parcels and 93.3% of land areas of the study sites similar with those of the four river areas, 84.3% of land parcels and 85.5% of land areas. The landuse classification of the study sites before the four river development was consisted most of 'river'(71.6%) and 'rice field'(12.3%), but after the development the 'river' was reduced to 42.7% and 'park area'(19.6%) including sport fields and 'mixed lots'(20.8%) were increased. Also, 86.7% of land parcels before the development could be reduced after the development if administrative districts and land ownerships were not considered. Cadastral information error categories can be found as cadastral polygon missing, polygon overlap, location and boundary non-coincidence, small polygon generation, and non-coincidence between cadastral boundary and river boundary. Landuse change monitoring method using air-photographs will be useful to analyze landuse state through fast information aquisition and to manage properties of national and public lands such as river areas.