• Title/Summary/Keyword: L-estimator

Search Result 105, Processing Time 0.05 seconds

A Feasible Two-Step Estimator for Seasonal Cointegration

  • Seong, Byeong-Chan
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.3
    • /
    • pp.411-420
    • /
    • 2008
  • This paper considers a feasible two-step estimator for seasonal cointegration as the extension of $Br{\ddot{u}}ggeman$ and $L{\ddot{u}}tkepohl$ (2005). It is shown that the reducedrank maximum likelihood(ML) estimator for seasonal cointegration can still produce occasional outliers as that for non-seasonal cointegration even though the sizes of them are not extreme as those in non-seasonal cointegration. The ML estimator(MLE) is compared with the two-step estimator in a small Monte Carlo simulation study and we find that the two-step estimator can be an attractive alternative to the MLE, especially, in a small sample.

A Note on Estimation Under Discrete Time Observations in the Simple Stochastic Epidemic Model

  • Oh, Chang-Hyuck
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.1
    • /
    • pp.133-138
    • /
    • 1993
  • We consider two estimators of the infection rate in the simple stochastic epidemic model. It is shown that the maximum likelihood estimator of teh infection rate under the discrete time observation does not have the moment of any positive order. Some properties of the Choi-Severo estimator, an approximation to the maximum likelihood estimator, are also investigated.

  • PDF

M-Estimation Functions Induced From Minimum L$_2$ Distance Estimation

  • Pak, Ro-Jin
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.4
    • /
    • pp.507-514
    • /
    • 1998
  • The minimum distance estimation based on the L$_2$ distance between a model density and a density estimator is studied from M-estimation point of view. We will show that how a model density and a density estimator are incorporated in order to create an M-estimation function. This method enables us to create an M-estimating function reflecting the natures of both an assumed model density and a given set of data. Some new types of M-estimation functions for estimating a location and scale parameters are introduced.

  • PDF

MTBF Estimator in Reliability Growth Model with Application to Weibull Process (와이블과정을 응용한 신뢰성 성장 모형에서의 MTBF 추정$^+$)

  • 이현우;김재주;박성현
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.3
    • /
    • pp.71-81
    • /
    • 1998
  • In reliability analysis, the time difference between the expected next failure time and the current failure time or the Mean Time Between Failure(MTBF) is of significant interest. Until recently, in reliability growth studies, the reciprocal of the intensity function at current failure time has been used as being equal to MTBE($t_n$)at the n-th failure time $t_n$. That is MTBF($t_n$)=l/$\lambda (t_n)$. However, such a relationship is only true for Homogeneous Poisson Process(HPP). Tsokos(1995) obtained the upper bound and lower bound for the MTBF($t_n$) and proposed an estimator for the MTBF($t_n$) as the mean of the two bounds. In this paper, we provide the estimator for the MTBF($t_n$) which does not depend on the value of the shape parameter. The result of the Monte Carlo simulation shows that the proposed estimator has better efficiency than Tsokos's estimator.

  • PDF

Resampling-based Test of Hypothesis in L1-Regression

  • Kim, Bu-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.3
    • /
    • pp.643-655
    • /
    • 2004
  • L$_1$-estimator in the linear regression model is widely recognized to have superior robustness in the presence of vertical outliers. While the L$_1$-estimation procedures and algorithms have been developed quite well, less progress has been made with the hypothesis test in the multiple L$_1$-regression. This article suggests computer-intensive resampling approaches, jackknife and bootstrap methods, to estimating the variance of L$_1$-estimator and the scale parameter that are required to compute the test statistics. Monte Carlo simulation studies are performed to measure the power of tests in small samples. The simulation results indicate that bootstrap estimation method is the most powerful one when it is employed to the likelihood ratio test.

Asymptotic Properties of a Robust Estimator for Regression Models with Random Regressor

  • Chang, Sook-Hee;Kim, Hae-Kyung
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.2
    • /
    • pp.345-356
    • /
    • 1999
  • This paper deals with the problem of estimating regression coefficients in nonlinear regression model having random regressor. The sufficient conditions for consistency of the $L_1$-estimator with random regressor are given and discussed in this paper. An example is given to illustrate the application of the main results.

  • PDF

Estimators of Pr [ X < Y ] in Block and Basu's Bivariate Exponential Model

  • Kim, Jae-Joo;Lee, Ki-Hoon;Lee, Yeon;Kim, Hwan-Joong
    • Journal of Korean Society for Quality Management
    • /
    • v.22 no.3
    • /
    • pp.124-141
    • /
    • 1994
  • The maximum likelihood estimator (M.L.E.) and the Bayes estimators of Pr (X < Y) are derived when X and Y have a absolutely continuous bivariate exponential distribution in Block & Basu's model. The performances of M.L.E. are compared to those Bayes estimators for moderate sample size.

  • PDF

A Projected Exponential Family for Modeling Semicircular Data

  • Kim, Hyoung-Moon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.6
    • /
    • pp.1125-1145
    • /
    • 2010
  • For modeling(skewed) semicircular data, we derive a new exponential family of distributions. We extend it to the l-axial exponential family of distributions by a projection for modeling any arc of arbitrary length. It is straightforward to generate samples from the l-axial exponential family of distributions. Asymptotic result reveals that the linear exponential family of distributions can be used to approximate the l-axial exponential family of distributions. Some trigonometric moments are also derived in closed forms. The maximum likelihood estimation is adopted to estimate model parameters. Some hypotheses tests and confidence intervals are also developed. The Kolmogorov-Smirnov test is adopted for a goodness of t test of the l-axial exponential family of distributions. Samples of orientations are used to demonstrate the proposed model.

The Efficiency of Conditional MLE for Pure Birth Processes

  • Yoon, Jong-Ook;Kim, Joo-Hwan
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.367-386
    • /
    • 2002
  • The Present paper is devoted to a study of the performance, in large samples, of a conditional maximum likelihood estimator(CMLE) for the parameter ${\lambda}$ in a pure birth processes(PBP). To conduct the conditional inference for the PBP, we drove the likelihood function of time-inhomogeneous Poisson processes. The limiting distributions of CMLE under the likelihoods $L_{t}$ or $\overline{L_{t}}$ are investigated. We found that the CMLE is asymptotically efficient with respect to the both $L_{t}$ or $\overline{L_{t}}$ under the efficiency criterion of Weiss & Wolfowitz(1974).

  • PDF

A Mixed Randomized Response Technique

  • Park, You-Sung;Lee, Jae-Choul
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.1
    • /
    • pp.39-48
    • /
    • 1996
  • A new method that uses information obtained not only from randomization device but also from direct question is introduced. The new maximum likelihood estimator is compared with those of Warner(1965) and Mangat(l994). For a choice of randomized device, we propose a choice depending on the sample size n and show that our estimator is more efficient than that of Mangat under the randomization device. The proposed procedure is extended to more general one which can be easily applied to some specific cases. Under the specified conditions, it is shown that the variance of this generalized estimator is smaller than that of Warner.

  • PDF