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Abstract

For modeling(skewed) semicircular data, we derive a new exponential family of distributions. We extend it

to the l-axial exponential family of distributions by a projection for modeling any arc of arbitrary length.

It is straightforward to generate samples from the l-axial exponential family of distributions. Asymptotic

result reveals that the linear exponential family of distributions can be used to approximate the l-axial

exponential family of distributions. Some trigonometric moments are also derived in closed forms. The

maximum likelihood estimation is adopted to estimate model parameters. Some hypotheses tests and confi-

dence intervals are also developed. The Kolmogorov-Smirnov test is adopted for a goodness of fit test of the

l-axial exponential family of distributions. Samples of orientations are used to demonstrate the proposed

model.

Keywords: Uniformly minimum variance unbiased estimator, maximum likelihood estimator, skewed l-

axial data, Kolmogorov-Smirnov test, delta method.

1. Introduction

In linear statistics, the exponential family of distributions (Lehmann and Casella, 1998; Lehmann

and Romano, 2005; Casella and Berger, 2002) is a big family that contains the continuous families-

normal, gamma, χ2, beta, log-normal and the discrete families-binomial, Poisson, and negative

binomial. It has many nice mathematical and statistical properties. Contrary to linear statistics,

the exponential family of distributions that can be used for modeling circular, semicircular, and

l-axial data is not clearly shown in most textbooks (Fisher, 1993; Jammalamadaka and SenGupta,

2001; Mardia and Jupp, 2000).

Many useful circular models may be generated by a variety of mechanisms from known probability

distributions on the real line or on the plane. A few general methods include:

(1) a wrapping method by wrapping a linear distribution around the unit circle

(2) a method through characterizing properties such as maximum entropy
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(3) an offset method

(4) a stereographic projection method that identifies points on the real line with those on the circle

circumference

However, none of these methods and models concentrate on the semicircular or the axial data.

Sometimes the angular data are given as modulo π. Some examples are as follows:

(1) the long axis of particles in sediments or the optical axis of a crystal(rather than a direction)

(2) orientations of core samples

(3) a sea turtle example that a sea turtle emerges from the ocean in search of a nesting site on dry

land. Therefore, we do not need full circular model in these data and is noted by Guardiola

(2004) and Jones (1968). Guardiola (2004) proposes a simple projection method to obtain the

semicircular normal distribution.

Most of those models are symmetric. Even recent models appearing in Jones and Pewsey (2005),

Pewsey et al. (2007) are symmetric. Pewsey (2002, 2004) considers the testing of problems where

the underlying distribution is reflectively symmetric about an unknown central direction and about

a median axis, respectively. Recently some skewed circular models have been developed using

a wrapping method by Pewsey (2000, 2006, 2008), and Jammalamadaka and Kozubowski (2003,

2004); however, none of these models concentrate on semicircular data. Note that the exponential

family of distributions contains symmetric and skewed distributions. In this sense we need to

develop a new exponential family of distributions for modeling(skewed) semicircular data.

This article is organized as follows. Section 2 defines a new exponential family of distributions

for modeling l-axial data. Semicircular, circular, and 4-axial exponential family of distributions are

obtained as special cases of the l-axial exponential family of distributions. We derive the trigonomet-

ric moments of the semicircular exponential family of distributions. We estimate the parameters

of the l-axial exponential family of distributions by a maximum likelihood method in Section 3.

Some hypothesis tests and confidence intervals are also developed in the same section. Samples of

orientations of termite mounds of Amitermes laurensis at 10th site in Cape York Peninsula, North

Queensland are employed to demonstrate the proposed model in Section 4. The conclusion is formed

in Section 5.

2. A New Exponential Family of Distributions

2.1. Definition

An important family of distributions is the exponential family, defined by probability densities of

the form

f(x : γ) = a(x)b(γ) exp

(
k∑
j=1

cj(x)dj(γ)

)
(2.1)

with respect to a σ-finite measure ν over a Euclidean sample space, where x ∈ ℜ, a(x) ≥ 0

and c1(x), . . . , ck(x) are real-valued functions of the observation x(they cannot depend on γ), and

b(γ) ≥ 0 and d1(γ), . . . , dk(γ) are real-valued functions of the possibly vector-valued parameter

γ(they cannot depend on x). These include the continuous families-normal, gamma, and beta

as well as the discrete families-binomial, Poisson, and negative binomial. The specific form of
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Figure 2.1. Projection from a normal distribution to a semicircle.

(2.1) implies that exponential families have many nice mathematical properties. However, more

importantly for a statistical model, the form of (2.1) implies many nice statistical properties, which

will be discussed throughout the remainder of the article.

To deal with angular data, we concern about the continuous exponential family of distributions.

We concentrate on k = 1 and call it the one parameter exponential family(OPEF) since usually

a location parameter is set to 0 and the following projection(transformation) is applied. Let x =

r tan(θ), then dx = r sec2(θ)dθ and the probability density function(it pdf) of θ is given by

f(θ; γ) = a∗(r tan(θ))b(γ) exp {c(r tan(θ))d(γ)} ,

where a∗(r tan(θ)) = r sec2(θ)a(r tan(θ)). See the Figure 2.1 to get an intuition of the projec-

tion(transformation). This is the projection from a normal distribution, N(0, σ2), to a semicircle.

If a linear random variable X has a support on ℜ, then θ has a support on (−π/2, π/2). The support
of X is ℜ+, then the support of θ is (0, π/2). These mean that, after the projection is applied, we

can handle semicircular data if support of X is ℜ and we can deal with 4-axial data when support

of X is ℜ+.

Hence, we need to extend it to l-axial data. Occasionally, measurements result in any arc of arbitrary

length, say 2π/l, l ∈ N, where N denotes a set of natural number. Apply θ∗ = 2θ/l for (−π/2, π/2)
and apply θ∗ = 4θ/l for (0, π/2), then the pdfs of θ∗ are given by

f(θ∗; γ) = a∗
(
r tan

lθ∗

cp

)
b(γ) exp

{
c

(
r tan

lθ∗

cp

)
d(γ)

}
, l ∈ N, (2.2)

where a∗(r tan(lθ∗/cp)) = r sec2(lθ∗/cp)a(r tan(lθ
∗/cp)), and cp, p = 1, 2, are c1 = 2 and c2 = 4

depending on the transformation. Notation cp will be used throughout the remainder of this article.

Furthermore θ∗ ∈ (−π/l, π/l) for X on ℜ and θ∗ ∈ (0, π/l) for X on ℜ+. Both projection methods

now can handle any arc of arbitrary length say 2π/l for l ∈ N. When l = 1, (2.2) is a circular

OPEF. If l = 2, then (2.2) is a semicircular OPEF. (2.2) is a 4-axial OPEF when l = 4.

Note that r is not a parameter. It is a known constant since, geometrically it is the distance

between the radius and the support of the OPEF density. Therefore, without loss of generality we
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can assume that r = 1 if necessary. Sometimes we can absorb the effect of r into the γ together

making a new parameter. For example, the l-axial normal distribution and the semicircular Laplace

distribution have φ = σ/r commonly. See the following examples.

For above pdf (2.2), we introduce a location parameter µ ∈ (−π, π). So plug in θ∗ − µ instead of

θ∗, the pdf is as follows:

f(θ∗;µ, γ) = a∗
(
r tan

(θ∗ − µ)

cp

)
b(γ) exp

{
c

(
r tan

l(θ∗ − µ)

cp

)
d(γ)

}
, (2.3)

where a∗(r tan(l(θ∗ − µ)/cp)) = r sec2(l(θ∗ − µ)/cp)a(r tan(l(θ
∗ − µ)/cp)) and l ∈ N. Now we can

handle any l-axial data with a location parameter. This is the reason that we assume a location

parameter 0 for linear exponential family and concentrate on OPEF. Unfortunately this family of

distributions with a location parameter µ is not a member of exponential family.

2.2. Some basic properties

We consider some basic properties of l-axial exponential family of distributions. The cumulative

distribution function(CDF) of l-axial exponential family is given by

Fθ∗(θ
∗) = FX

(
r tan

(
l(θ∗ − µ)

cp

))
, (2.4)

using the projection method, where FX(·) is the cdf of a linear random variable X. Simulation from

the l-axial exponential family is also straightforward as follows:

θ∗ = µ+
cp
l
tan−1

(x
r

)
(2.5)

by inverting the transformation. So we first generate samples from a linear random variable X and

then use the stochastic relationship (2.5).

The following Lemma (Gradshteyn and Ryzhik, 2007) will be used continuously.

Lemma 2.1.

tan(x) =

∞∑
k=1

22k(22k − 1)

(2k)!
|B2k|x2k−1, x2 <

π2

4
,

sec(x) =
∞∑
k=0

|E2k|
(2k)!

x2k, x2 <
π2

4
,

where the number Bn, representing the coefficients of tn/n! in the expansion of the function

t

et − 1
=

∞∑
n=0

Bn
tn

n!
, 0 < |t| < 2π,

are called Bernoulli numbers. In addition, the numbers En, representing the coefficients of tn/n! in

the expansion of the function

1

cosh t
=

∞∑
n=0

En
tn

n!
, |t| < π

2
,

are known as the Euler numbers.
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Asymptotic distribution of l-axial exponential family for sufficiently small γ is given by

a∗∗(rγyp)b(γ) exp{c(rγyp)d(γ)},

where a∗∗(rγyp) = cpa(rγyp)rγ/l and yp = l(θ∗ − µ)/cpγ, p = 1, 2. Support of y1 is ℜ and

support of y2 is ℜ+. Note that this is a member of OPEF most of the cases since a∗∗(rγyp)

and c(rγyp) can be separated as a function of yp and a function of γ when µ is known. So a

linear OPEF can approximate the l-axial OPEF for sufficiently small γ. This can be done first by

yp = l(θ∗ − µ)/(cpγ), p = 1, 2 and then by Lemma 2.1 if we use only up to the first order terms.

For all following examples, a∗∗(rγyp) and c(rγyp) can be separated a function of yp and a function

of γ. Furthermore the distributions of all examples are members of OPEF when µ is known. Some

examples are as follows:

Example 2.1. The pdf of l-axial normal(LAN) distribution is given by

f(θ∗;µ, φ) =
l

2
√
2πφ

sec2
(
l(θ∗ − µ)

2

)
exp

(
− tan2(l(θ∗ − µ)/2)

2φ2

)
,

where −π/l+µ < θ∗ < π/l+µ, φ = σ/r and −π < µ < π. This pdf is derived using the semicircular

normal(SCN) distribution (Guardiola, 2004) and the transformation θ∗ = 2θ/l + µ. We shall say

that θ∗ follows LAN(µ, φ2). Note that l = 1 gives us the circular normal(CN) distribution, l = 2

suggests the SCN distribution, and l = 4 is the 4-axial normal(4AN) distribution. Asymptotic

distribution of LAN distribution for sufficiently small φ is the standard normal distribution after

the transformation Y = l(θ∗ − µ)/2φ and by Lemma 2.1 if we use only up to the first order terms.

Example 2.2. The l-axial Laplace(LAL) distribution (Ahn and Kim, 2008) is defined by

f(θ∗;µ, φ) =
l

4φ
sec2

l(θ∗ − µ)

2
exp

(
−|tan(l(θ∗ − µ)/2)|

φ

)
, (2.6)

where φ = σ/r, −π/l + µ < θ∗ < π/l + µ, −π < µ < π. Then, we say that θ is an LAL random

variable with parameters µ and φ; for brevity, we shall also say that θ is LAL(µ, φ). Note that when

l = 2, the pdf (2.6) is the semicircular Laplace(SCL) pdf. When l = 1, it becomes the pdf of a circular

Laplace(CL) distribution. l = 4 is the case of 4-axial Laplace(4AL) pdf. We consider the asymptotic

behavior of the LAL distribution when φ→ 0. Suppose θ follows LAL(µ, φ). Let Y = l(θ∗−µ)/2φ,
and then use the change of variable technique. For sufficiently small φ, by Lemma 2.1 with only

up to the first order terms, the distribution of Y becomes Laplace(0, 1). So, for sufficiently small

φ, the LAL distribution can be approximated by a (linear) Laplace distribution.

Example 2.3. We derive the pdf of l-axial Gamma(LAG) distribution for known δ as follows:

f(θ∗;µ, φ) =
l sec2(l(θ∗ − µ)/4)

4Γ(δ)φδ

{
tan

l(θ∗ − µ)

4

}δ−1

exp

(
− tan(l(θ∗ − µ)/4)

φ

)
, (2.7)

where φ = β/r, µ < θ∗ < 2π/l + µ and −π < µ < π. Then, we say that θ∗ follows LAG(µ, φ).

Similarly, l = 1 gives us the circular gamma(CG) distribution. l = 2 suggest the semicircular

Gamma(SCG) distribution. The 4-axial gamma(4AG) distribution is obtained when l = 4. An

asymptotic distribution when φ → 0 is Γ(δ, 1) after the transformation Y = l(θ∗ − µ)/4φ and by

Lemma 2.1 if we use only up to the first order terms. Hence, linear gamma distribution can be

used to approximate the LAG distribution. This distribution is also skewed to the right. Note that

when δ = 1, this LAG distribution contains the l-axial exponential distributions as a special case.
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Remark 2.1. For unknown δ, (2.7) is still a member of an exponential family when µ is known.

For δ = ν/2 and β = 2, (2.7) becomes the pdf of l-axial χ2 distribution. However δ = ν/2 is not

known in this case.

Example 2.4. The pdf of l-axial χ2 distribution(LAC2) is defined by

f(θ∗;µ, φ) =
lr sec2(l(θ∗ − µ)/4)

4Γ (ν/2) 2
ν
2

{
r tan

l(θ∗ − µ)

4

} ν
2
−1

exp

(
−r tan(l(θ

∗ − µ)/4)

2

)
, (2.8)

where µ < θ∗ < 2π/l + µ, − π < µ < π. Then, we say that θ∗ is an LAC2 random variable with

parameters µ and ν; for brevity, we shall also say that θ∗ follows LAC2(µ, ν). Note that l = 1 gives

us the circular χ2(CC2) distribution, l = 2 suggests the semicircular χ2(SCC2) distribution, and

l = 4 is the 4-axial χ2(4AC2) distribution. We consider the asymptotic behavior of an LAC2(µ, ν)

when ν goes to 0. For the density (2.8), take a transformation Y = l(θ∗ − µ)/4ν. And then, for

sufficiently small ν, by Lemma 2.1 if we use only up to the first order terms, the pdf of Y is given

by

f(y; ν) =
rν

Γ (ν/2) 2
ν
2
(rνy)

ν
2
−1 exp

(
−rνy

2

)
.

Therefore the density of Y is approximately χ2(ν)/(rν) which means that the LAC2 distribution

can be approximated by ‘linear’ χ2 distribution for sufficiently small ν. Note that this distribution

is obviously skewed to the right, so we can handle skewed l-axial data.

2.3. Trigonometric moments

Unlike usual linear distributions, we need to derive the trigonometric moments of the l-axial expo-

nential family. Similar to those of any circular density, trigonometric moments of l-axial distribution

are defined as follows: ϕp = Eeipθ
∗
= αp + iβp = E cos(pθ∗) + iE sin(pθ∗), p = 0,±1,±2, . . .. In

particular, two functions of the first trigonometric moments play the most prominent role defined

as

ρ =
√
α2
1 + β2

1 and τ = arctan∗
(
β1
α1

)
,

where

τ = arctan∗
(
β1
α1

)
=



tan−1 β1
α1
, if α1 > 0, β1 ≥ 0,

π

2
, if α1 = 0, β1 > 0,

tan−1 β1
α1

+ π, if α1 < 0,

tan−1 β1
α1

+ 2π, if α1 ≥ 0, β1 < 0,

undefined, if α1 = 0, β1 = 0.

The length ρ and when it is non-zero, the direction τ are used to provide theoretical or population

measures of the concentration and the mean direction of angular data, respectively. It can be seen

that ρ lies between 0 and 1. The larger ρ, i.e., the closer it is to 1, the more the concentration

towards the mean direction τ . For the following examples, it is easy to derive these measures using

obtained trigonometric moments.



Projected Exponential Family 1131

To get the trigonometric moments, we take a projection such as x = tan(θ∗) and then calculate those

moments treating those as usual integration. This is because most books containing integration

formulas are described based on real or complex domains instead of angular domains. To do this we

need to change cos(pθ∗) and sin(pθ∗) in terms of tan(θ∗). This can be done by the multiple-angle

formulas that are,

cos(p θ∗) =

p∑
k=0

(
p

k

)
cosk(θ∗) sinp−k(θ∗) cos

[
(p− k)π

2

]
,

sin(p θ∗) =

p∑
k=0

(
p

k

)
cosk(θ∗) sinp−k(θ∗) sin

[
(p− k)π

2

]
,

when p ∈ N. This multiple-angle formulas established only using the Euler formula and binomial

theorem.

Lemma 2.2. Using x = tan(θ∗), above multiple-angle formulas are given in terms of x by

cos(p θ∗) =

p∑
k=0

(
p

k

)
c1p−kx

p−k(1 + x2)−
p
2 ,

sin(p θ∗) =

p∑
k=0

(
p

k

)
c2p−kx

p−k(1 + x2)−
p
2 ,

where sin(θ∗) = x/
√
1 + x2, cos(θ∗) = 1/

√
1 + x2,

cos

[
(p− k)π

2

]
= c1p−k =


1, if p− k = 4m,

0, if p− k = 2m+ 1,

−1, if p− k = 4m+ 2

and

sin

[
(p− k)π

2

]
= c2p−k =


1, if p− k = 4m+ 1,

0, if p− k = 2m,

−1, if p− k = 4m+ 3,

where m = 0, 1, 2, . . ..

Specific trigonometric moments depend on the forms of the l-axial exponential family of distribu-

tions. To find trigonometric moments of SCN distribution, see Guardiola (2004). SCL trigonometric

moments can be found at Ahn and Kim (2008). For all these papers, only up-to the fourth (or

the second) trigonometric moments are derived so we need to derive a general formula of all the

trigonometric moments.

Without loss of generality, we assume that a location parameter µ is 0. In general, the kth cosine

moment, αk = E cos(kθ∗), of the semicircular exponential family of distributions is the same as the

2kth cosine moment, α2k = E cos(2kθ∗), of the 4-axial exponential family of distributions. The kth

cosine moment, αk = E cos(kθ∗), of the circular exponential family of distributions is the same as

the 2kth cosine moment, α2k = E cos(2kθ∗), of the semicircular exponential family of distributions.

If the l-axial exponential family of distributions is symmetric, then βp=E sin(pθ∗), p=0,±1,±2, . . .,

are 0 like any other symmetric circular density. If not, the similar relationship also exist for the sine
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moments. That is, the kth sine moment, βk = E sin(kθ∗), of the semicircular exponential family

of distributions is the same as the 2kth sine moment, β2k = E sin(2kθ∗), of the 4-axial exponential

family of distributions because of the transformation we use. Furthermore the kth sine moment,

βk = E sin(kθ∗), of the circular exponential family of distributions is the same as the 2kth sine

moment, β2k = E sin(2kθ∗), of the semicircular exponential family of distributions.

Based on the relationship between the trigonometric moments and our goal for developing models

for semicircular data, we concentrate on the trigonometric moments of the semicircular exponential

family of distributions. First of all, we derive the trigonometric moments of the SCN distribution

as follows:

Theorem 2.1. Let θ∗ ∼ SCN(0, φ2), then the trigonometric moments are as follows:

αp =
1√
2πφ

∑
k∈Rc

(
p

k

)
c1p−kΓ

(
p− k + 1

2

)
Ψ

(
p− k + 1

2
,
3− k

2
;

1

2φ2

)
,

βp = 0,

α−p = αp, p ∈ N. Furthermore α0 = 1,

where Ψ(α, γ; z) has an integral representation as (1/Γ(α))
∫∞
0
e−zttα−1(1+ t)γ−α−1dt (Gradshteyn

and Ryzhik; 2007). Ψ(α, γ; z) is related to a confluent hypergeometric function as follows:

Ψ(α, γ; z) =
Γ(1− γ)

Γ(α− γ + 1)
Φ(α, γ; z) +

Γ(γ − 1)

Γ(α)
z1−γΦ(α− γ + 1, 2− γ; z).

A confluent hypergeometric function has a second notation 1F1(α; γ; z). Rc denote the set of values

such that {k|k = 0, 1, . . . , p satisfying {p− k = 2m, m = 0, 1, 2, . . .}}.

Proof. For cosine moments, we use the transformation x = tan(θ∗). So cos(pθ∗) can be expressed

as a function of x using Lemma 2.2. The integrand is an even function of x when p−k is even so we

use this property. When p− k is odd, the integral is 0 since the integrand is an odd function of x.

We change the order of the summation and integration as well as apply a transformation, y = x2,

then an intermediate expression is

αp =
1√
2πφ

∑
k∈Rc

(
p

k

)
c1p−k

∫ ∞

0

y
p−k−1

2 (1 + y)−
p
2 exp

(
− y

2φ2

)
dy.

�

The result follows immediately by the integral formula 9.211.4 (Gradshteyn and Ryzhik, 2007).

Since the SCN distribution is symmetric, βp = 0. By the property of sine and cosine functions, the

remaining results are obvious.

The trigonometric moments of the SCL distribution are as follows:

Theorem 2.2. Let θ∗ ∼ SCL(0, φ), then the trigonometric moments are as follows:

αp =
1

2
√
πΓ
(p
2

)
φ

∑
k∈Rc

(
p

k

)
c1p−kG

31
13

 1

4φ2

∣∣∣∣∣∣∣
1− p+ k

2
k − 1

2
, 0,

1

2

 ,

βp = 0,

α−p = αp, p ∈ N. Furthermore α0 = 1,
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where Gmnpq

(
x
∣∣a1,...,ap
b1,...,bq

)
is called as Meijer’s G-function (Gradshteyn and Ryzhik; 2007). Rc denote

the set of values such that {k|k = 0, 1, . . . , p satisfying {p− k = 2m, m = 0, 1, 2, . . . .}}.

Proof. For the cosine moments, we use the transformation x = tan(θ∗). So cos(pθ∗) can be

expressed as a function of x using Lemma 2.2. The integrand is an even function of x when p− k

is even. The integral is 0 when p− k is odd since the integrand is an odd function of x. We change

the order of the summation and integration, so

αp =
1

φ

∑
k∈Rc

(
p

k

)
c1p−k

∫ ∞

0

xp−k(1 + x2)−
p
2 exp

(
− x

φ

)
dx.

�

The result follows immediately by the integral formula 3.389.2 (Gradshteyn and Ryzhik, 2007).

Since SCL distribution is symmetric, βp = 0 like any other circular density. By the property of sine

and cosine functions, the remaining results are obvious.

We also derive the trigonometric moments of SCG distribution for known δ w.l.o.g. µ = 0. Remark

that the trigonometric moments still legitimate whether δ is known or not.

Theorem 2.3. Let θ∗ ∼ SCG(0, φ), then the trigonometric moments are as follows:

αp =
1

2
√
πΓ(γ)Γ(p)φγ

2p∑
k=0

(
2p

k

)
c12p−kG

31
13

 1

4φ2
,

∣∣∣∣∣∣∣
1− 2p− k + γ

2
k − γ

2
, 0,

1

2

 ,

βp =
1

2
√
πΓ(γ)Γ(p)φγ

2p∑
k=0

(
2p

k

)
c22p−kG

31
13

 1

4φ2

∣∣∣∣∣∣∣
1− 2p− k + γ

2
k − γ

2
, 0,

1

2

 ,

α−p = αp and β−p = −βp, p ∈ N. Furthermore α0 = 1 and β0 = 0.

Proof. We use a transformation, θ = θ∗/2 for the SCG(0, φ) random variable, then the distribution

of θ becomes 4AG(0, φ). For cosine moments, we use the transformation x = tan(θ). So cos(pθ∗) =

cos(2pθ) can be expressed as a function of x using Lemma 2.2. We change the order of the summation

and integration, then

αp =
1

Γ(γ)φγ

2p∑
k=0

(
2p

k

)
c12p−k

∫ ∞

0

x2p−k+γ−1(1 + x2)−p exp

(
− x

φ

)
dx.

�

The result follows immediately by the integral formula 3.389.2 (Gradshteyn and Ryzhik, 2007).

Since the SCG distribution is not symmetric, we need to derive sine moments. For the sine moments,

we apply a similar approach; then the result follows immediately by the same integral formula. By

the property of sine and cosine functions, the remaining results are obvious.

We derive the trigonometric moments of SCC2 distribution similar to Theorem 2.3.



1134 Hyoung-Moon Kim

Corollary 2.1. Let θ∗ ∼ SCC2(0, ν) with, w.l.o.g., r = 1, then the trigonometric moments are as

follows:

αp =
1

Γ (ν/2) Γ(p)2
ν

2+1
√
π

2p∑
k=0

(
2p

k

)
c12p−kG

31
13

 1

16

∣∣∣∣∣∣∣
1− 2p− k

2
− ν

4
k

2
− ν

4
, 0,

1

2

 ,

βp =
1

Γ (ν/2) Γ(p)2
ν

2+1
√
π

2p∑
k=0

(
2p

k

)
c22p−kG

31
13

 1

16

∣∣∣∣∣∣∣
1− 2p− k

2
− ν

4
k

2
− ν

4
, 0,

1

2

 ,

α−p = αp, and β−p = −βp, p ∈ N. Furthermore α0 = 1 and β0 = 0.

Therefore, for example, the first αp = E cos(pθ∗), p = 1 of SCC2(0, ν) with, w.l.o.g., r = 1 is as

follows:

α1 =
1

Γ (ν/2) 2
ν
2
√
π
G31

13

 1

16

∣∣∣∣∣∣∣
1− ν

4

1− ν

4
, 0,

1

2

− 1.

Note that cos(2θ∗) = 2/(1 + x2) − 1 = (1 − x2)/(1 + x2), where x = tan(θ∗). So the first cosine

moment can be checked with this identity and the integral formula 3.389.2 (Gradshteyn and Ryzhik,

2007).

The first sine moment βp = E sin(pθ∗), p = 1 of SCC2(0, ν) with, w.l.o.g., r = 1 is as follows:

β1 =
1

Γ (ν/2) 2
ν
2
√
π
G31

13

 1

16

∣∣∣∣∣∣∣
1

2
− ν

4
1

2
− ν

4
, 0,

1

2

 .

3. Statistical Inference

We divide the problems into 2 cases. First assuming µ known and γ unknown, and secondly

assuming µ unknown, γ known or both µ and γ unknown. For the first case, we can get very nice

theoretical results. In Section 3.3, we examine how to choose an appropriate model among the

l-axial exponential family of distributions.

3.1. Assuming µµµ known and γγγ unknown

To make the problem in hand, we change the densities (2.3) in the canonical form. If we change

d(γ) as η and write the densities (2.3) in the canonical form similar to the linear canonical form,

then

f(θ∗;µ, η) = a∗
(
r tan

l(θ∗ − µ)

cp

)
exp

{
c

(
r tan

l(θ∗ − µ)

cp

)
η −A(η)

}
, l ∈ N, p = 1, 2, (3.1)

where a∗(r tan(l(θ∗ − µ)/cp)) = r sec2(l(θ∗ − µ)/cp)a(r tan(l(θ
∗ − µ)/cp)), and A(η) = − log(b(γ)).

When p = 1, θ∗ is in (−π/l + µ, π/l + µ) and for p = 2, θ∗ is in (µ, 2π/l + µ). The set Ξ of points

η for which ∫
a∗
(
r tan

l(θ∗ − µ)

cp

)
exp

{
c

(
r tan

l(θ∗ − µ)

cp

)
η

}
dν(θ

∗) <∞
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is called the natural parameter space of the family and η is called the natural parameter.

Note ∫
a∗
(
r tan

l(θ∗ − µ)

cp

)
exp

{
c

(
r tan

l(θ∗ − µ)

cp

)
η −A(η)

}
dν(θ

∗) = 1.

Differentiate above identity with respect to η to find

Eηc

(
r tan

l(θ∗ − µ)

cp

)
=

d

dη
A(η). (3.2)

Differentiating above identity with respect to η again to find

Varηc

(
r tan

l(θ∗ − µ)

cp

)
=

d2

dη2
A(η).

The log-likelihood for a random sample of size n, θ∗ = (θ∗1 , . . . , θ
∗
n), from (3.1) is

l(η) =

n∑
i=1

log

{
a∗
(
r tan

l(θ∗i − µ)

cp

)}
+ η

n∑
i=1

c

(
r tan

l(θ∗i − µ)

cp

)
− nA(η).

The likelihood equation is given by

1

n

n∑
i=1

c

(
r tan

l(θ∗i − µ)

cp

)
=

d

dη
A(η).

So by (3.2)

Eηc

(
r tan

l(θ∗i − µ)

cp

)
=

d

dη
A(η) =

1

n

n∑
i=1

c

(
r tan

l(θ∗i − µ)

cp

)
. (3.3)

The left most side of (3.3) is a strictly increasing function of η since

d

dη
Eηc

(
r tan

l(θ∗i − µ)

cp

)
= Varηc

(
r tan

l(θ∗i − µ)

cp

)
> 0. (3.4)

It follows that equation (3.3) has at most one solution. The conditions of Theorem 3.10 (Lehmann

and Casella, 1998) are satisfied. This theorem is related to establishing the existence of a consis-

tent root of the likelihood equation. Furthermore, this theorem asserts that any such sequence is

asymptotically normal and efficient.

With probability tending to 1, (3.3) therefore has a solution η̂. This solution is the maximum

likelihood estimator(mle) of η and is unique, consistent, and asymptotically efficient so that

√
n(η̂ − η)

L→ N

(
0,

1

I(η)

)
, (3.5)

where I(η) is the Fisher information defined as

I(η) = Eη

[
d

dη
log f(θ∗)

]2
. (3.6)

After direct calculation of (3.6) using (3.3) and (3.4), we obtain it as

I(η) = Eη

[
d

dη
log f(θ∗)

]2
=

d2

dη2
A(η) = Varηc

(
r tan

l(θ∗i − µ)

cp

)
. (3.7)
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Furthermore g(η̂) for any function g(·) is the mle of g(η) by the invariance property of mle. Asymp-

totic distribution of g(η̂) is as follows:

√
n(g(η̂)− g(η))

L→ N

(
0,

[g′(η)]2

I(η)

)
,

by the delta method provided g′(η) exists and is not zero.

Based on this asymptotic distribution of η̂, (3.5), we can do hypotheses test about η. The test

statistic is

TS0 =
η̂ − η0√√√√√( d2

dη2
A(η)

∣∣∣
η=η0

)−1

n

.

For the two sided test of H0 : η = η0 vs. H1 : η ̸= η0, we reject H0 if |TS0| > zα/2 since, under

H0, the distribution of the test statistic is the standard normal distribution. Under H0 : η ≥ η0, we

reject H0 if TS0 < −zα. Similarly we reject H0 : η ≤ η0 if TS0 > zα. Since for the one-sided tests,

under H0, the distribution of the test statistic is the standard normal distribution. Approximate

(1−α)100% two-sided confidence interval is immediate by the asymptotic distribution of η̂ as follow:

η̂ ± zα
2

√√√√√( d2

dη2
A(η)

∣∣∣
η=η̂

)−1

n

since η̂ is a consistent estimator of η and by Slutsky’s theorem.

Furthermore
∑n
i=1 c(r tan(l(θ

∗
i − µ)/cp)) is a sufficient statistic for η by the Factorization theorem.

This family of distributions is a complete so it is a complete sufficient statistic for η. If we can find an

unbiased estimator of η, then it is also UMVUE(Uniformly Minimum Variance Unbiased Estimator)

for η by the Rao-Blackwell-Lehmann-Scheffé theorem (Lehmann and Casella, 1998). To validate all

these theoretical results, an ad hoc approach first gets good estimates of a location parameter µ,

for example, circular mean (Jammalamadaka and SenGupta, 2001). Then the data is now free of

location so the above theoretical results can be applied which is fruitful. For the following examples,

Cramer-Rao inequality is exact and every parameter is UMVUE of the corresponding parameters.

Some examples are as follows:

Example 3.1. For Example 2.1 of Section 2.1, let η = 1/φ2, then A(η) = − log(η)/2. So mle

of η is n/
∑n
i=1 tan

2(l(θ∗i − µ)/2) and mle of φ2 is (1/n)
∑n
i=1 tan

2(l(θ∗i − µ)/2) by the invariance

property of mle. This estimator is UMVUE of φ2 and Cramer-Rao inequality is exact. An unbiased

condition can be checked using the transformation Xi = tan(l(θ∗i − µ)/2) and normal distribution

moments. The asymptotic distribution of η̂ is

√
n (η̂ − η)

L→ N
(
0, 2η2

)
.

Furthermore asymptotic distribution of φ̂2 is given by the delta method as follows:

√
n
(
φ̂2 − φ2

)
L→ N

(
0, 2φ4) .
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The test statistic based on asymptotic distribution is

TS0 =
φ̂2 − φ2

0√
2φ2

0/
√
n
.

To test H0 : φ2 = φ2
0 vs. H1 : φ2 ̸= φ2

0, we reject H0 if |TS0| > zα/2. Under H0 : φ2 ≥ φ2
0, we

reject H0 if TS0 < −zα. Similarly, we reject H0 : φ2 ≤ φ2
0 if TS0 > zα. Approximate (1− α)100%

two-sided confidence interval for φ2 is given by

φ̂2 ± zα
2

√
2φ̂2

√
n

by Slutsky’s theorem.

An interesting point is that we can also derive the exact distribution of φ̂2. For the SCN density, let

Xi = tan(l(θ∗i − µ)/2) then the distribution of Xi/φ are independent and identically distributed as

the standard normal distribution. So the distribution of mle of φ2 is (φ2/n)χ2(n) by the property

of χ2 distribution. The test statistic based on the exact distribution is

TS0 =
nφ̂2

φ2
0

.

The distribution of the test statistic is χ2(n) under H0 : φ2 = φ2
0 so we reject H0 if TS0 > χ2

n,α/2

or TS0 < χ2
n,1−α/2. Under H0 : φ2 ≥ φ2

0, we reject H0 if TS0 < χ2
n,1−α. Similarly we reject

H0 : φ2 ≤ φ2
0 if TS0 > χ2

n,α. Since, under the given two one-sided H0’s, the test statistic’s

distribution is χ2(n). Exact (1− α)100% two-sided confidence interval for φ2 is given by(
nφ̂2

χ2
n,α

2

,
nφ̂2

χ2
n,1−α

2

)
.

Example 3.2. For Example 2.2 of Section 2.1, let η = 1/φ, then A(η) = − log(η). Therefore,

the mle of η is n/
∑n
i=1 | tan(l(θ

∗
i − µ)/2)| and mle of φ is (1/n)

∑n
i=1 | tan(l(θ

∗
i − µ)/2)| by the

invariance property of mle. Mle of φ is also UMVUE and Cramer-Rao inequality has exact bound.

Asymptotic distribution of η̂ is

√
n(η̂ − η)

L→ N(0, η2),

and the asymptotic distribution of φ̂ is given by the delta method as follows:

√
n(φ̂− φ)

L→ N(0, φ2).

The test statistic is

TS0 =
φ̂− φ0

φ0/
√
n
.

Under H0 : φ = φ0, we reject H0 if |TS0| > zα/2. Under H0 : φ ≥ φ0, we reject H0 if TS0 < −zα.
Similarly we reject H0 : φ ≤ φ0 if TS0 > zα. Approximate (1 − α)100% two-sided confidence

interval for φ is given by

φ̂± zα
2

φ̂√
n
,
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by Slutsky’s theorem.

Similar to SCN distribution, we can get the exact distribution of mle of φ. Let Xi = | tan(l(θ∗i −
µ)/2)|, then the distribution of φ̂ is Γ(n, φ/n) by the property of gamma distribution. The test

statistic based on the exact distribution is

TS0 =
2nφ̂

φ0
.

The distribution of the test statistic is χ2(2n) under H0 : φ = φ0 by the property of gamma

distribution. So we reject H0 if TS0 > χ2
2n,α/2 or TS0 < χ2

2n,1−α/2. Under H0 : φ ≥ φ0, we reject

H0 if TS0 < χ2
2n,1−α. Similarly, we reject H0 : φ ≤ φ0 if TS0 > χ2

2n,α. Since, under the given two

one-sided H0’s, the test statistic’s distribution is χ2(2n). Exact (1− α)100% two-sided confidence

interval for φ is given by (
2nφ̂

χ2
2n,α

2

,
2nφ̂

χ2
2n,1−α

2

)
.

Example 3.3. For example 3.3 of Section 2.1, let η = 1/φ, then A(η) = −δ log(η). Therefore, the
mle of η is nδ/

∑n
i=1 tan(l(θ

∗
i − µ)/4) and mle of φ is 1/nδ

∑n
i=1 tan(l(θ

∗
i − µ)/4) by the invariance

property of mle. Mle of φ is also UMVUE and Cramer-Rao inequality has exact bound. Asymptotic

distribution of η̂ is

√
n(η̂ − η)

L→ N

(
0,
η2

γ

)
,

and the asymptotic distribution of φ̂ is given by the delta method as follows:

√
n(φ̂− φ)

L→ N

(
0,
φ2

γ

)
.

The test statistic is

TS0 =
φ̂− φ0

φ0/
√
nγ

.

Under H0 : φ = φ0, we reject H0 if |TS0| > zα/2. Under H0 : φ ≥ φ0, we reject H0 if TS0 < −zα.
Similarly we reject H0 : φ ≤ φ0 if TS0 > zα. Approximate (1 − α)100% two-sided confidence

interval for φ is given by

φ̂± zα
2

φ̂
√
nγ

,

by Slutsky’s theorem.

Let Xi = tan(l(θ∗i − µ)/4), then the distribution of φ̂ is Γ(nγ, φ/(nγ)) by the property of gamma

distribution. We can do hypotheses test based on the exact distribution. The test statistic based

on the exact distribution is now

TS0 =
2nγφ̂

φ0
.

The distribution of the test statistic is χ2(2nγ) under H0 : φ = φ0 by the property of gamma

distribution. So we reject H0 if TS0 > χ2
2nγ,α/2 or TS0 < χ2

2nγ,1−α/2. Under H0 : φ ≥ φ0, we reject
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H0 if TS0 < χ2
2nγ,1−α. Similarly we reject H0 : φ ≤ φ0 if TS0 > χ2

2nγ,α. Since, under the given two

one-sided H0’s, the test statistic’s distribution is χ2(2nγ). Exact (1−α)100% two-sided confidence

interval for φ is given by (
2nγφ̂

χ2
2nγ,α

2

,
2nγφ̂

χ2
2nγ,1−α

2

)
.

Example 3.4. For Example 3.4 of Section 2.1, let η = ν, then A(η) = log(Γ(η/2)2η/2). Therefore

the mle of ν is the solution of the likelihood equation,

1

2n

n∑
i=1

log

(
r tan

(
l(θ∗i − µ)

4

))
=

d

dν
log Γ

(ν
2

)
− log(2)

2

after simple algebra. Unfortunately in this case we cannot get the mle of ν as in closed form, but

still we can get it using some numerical methods. Asymptotic distribution of ν̂ is

√
n(ν̂ − ν)

L→ N

(
0,

4

ζ

(
2,
ν

2

))
,

where ζ(z, q) is Riemann’s zeta function (Gradshteyn and Ryzhik, 2007) which has an integral

representation

ζ(z, q) =
1

Γ(z)

∫ ∞

0

tz−1e−qt

1− e−t
dt.

Asymptotic variance of
√
n(ν̂ − ν), 1/Varν {(1/2) log(r tan(l(θ∗i − µ)/4))}, is derived using a trans-

formation, Xi = r tan(l(θ∗i − µ)/4) which follows χ2(ν) distribution.

E logXi is derived using the integral formula 4.352.1 (Gradshteyn and Ryzhik, 2007) as follows:

E logXi = ψ
(ν
2

)
+ log 2, (3.8)

where ψ(z) is Euler psi function defined by ψ(z) = d/dz log Γ(z). It has an integral representation

as follows:

ψ(z) =

∫ ∞

0

(
e−t

t
− e−zt

1− e−t

)
dt.

E(logXi)
2 is derived using the integral formula 4.358.2 (Gradshteyn and Ryzhik, 2007) as follows:

E(logXi)
2 =

[
ψ
(ν
2

)
+ log 2

]2
+ ζ

(
2,
ν

2

)
. (3.9)

Hence asymptotic variance of
√
n(ν̂ − ν) is immediate using (3.8) and (3.9). We may also derive

I(η) using (3.7) as follows:

I(ν) = A
′′
(ν) =

Γ
′′
(ν
2

)
Γ
(ν
2

)
−
(
Γ

′
(ν
2

))2
4
(
Γ
(ν
2

))2 .

We use the asymptotic variance since this closed form is little bit more complicated than the

asymptotic variance.
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The test statistic is

TS0 =
ν̂ − ν0√

4/{ζ (2, ν0/2) · n}
.

Under H0 : ν = ν0, we reject H0 if |TS0| > zα/2. Under H0 : ν ≥ ν0, we reject H0 if TS0 < −zα.
Similarly we reject H0 : ν ≤ ν0 if TS0 > zα. Approximate (1−α)100% two-sided confidence interval

for ν is given by

ν̂ ± zα
2

√
4

{ζ (2, ν̂/2) · n} ,

by Slutsky’s theorem.

3.2. Assuming µµµ unknown, γγγ known or both µµµ and γγγ unknown

In these situations, nice theoretical results are not easy. However, we can still get the mles of

unknown parameters using any numerical routines. The log-likelihood for a random sample of size

n, θ∗ = (θ∗1 , . . . , θ
∗
n), from (2.3) is

l(µ, γ) =

n∑
i=1

log

{
a∗
(
r tan

l(θ∗i − µ)

cp

)}
+ n log b(γ) + d(γ)

n∑
i=1

c

(
r tan

l(θ∗i − µ)

cp

)
.

The corresponding estimates can be computed by direct minimization (Byrd et al., 1995) of the

minus log-likelihood itself. Byrd’s method allows box constraints, that is, each variable can be given

a lower and/or upper bound. For l-axial exponential family, to improve estimation process we can

use ranges of µ and γ of the likelihood as box constraints. These constraints depend on a specific

distribution.

Another possible approach is the profile log-likelihood method. We have a random sample of size

n, θ∗ = (θ∗1 , . . . , θ
∗
n), from (3.1). For fixed µ, the mle of η is a solution to the likelihood equation of

canonical form, i.e.

1

n

n∑
i=1

c

(
r tan

l(θ∗i − µ)

cp

)
=

d

dη
A(η). (3.10)

Denote it as η̂. Thus the profile log-likelihood is

l(µ) = l(µ, η̂) =

n∑
i=1

log

{
a∗
(
r tan

l(θ∗i − µ)

cp

)}
+ η̂

n∑
i=1

c

(
r tan

l(θ∗i − µ)

cp

)
− nA(η̂). (3.11)

The solution of the profile log-likelihood equation for µ is hard to get in closed form, but it is

relatively easy to use a numerical maximization subroutine to obtain it. For an initial value of µ,

we can use any measure of center, for example, circular mean (Jammalamadaka and SenGupta,

2001) defined by

µ0 =



tan−1 S

C
, if C > 0, S ≥ 0,

π

2
, if C = 0, S > 0,

tan−1 S

C
+ π, if C < 0,

tan−1 S

C
+ 2π, if C ≥ 0, S < 0,

undefined, if C = 0, S = 0,
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where (C, S) = (
∑n
i=1 cos(θ

∗
i ),
∑n
i=1 sin(θ

∗
i )). We iterate the above profile approach until conver-

gence, i.e.,

An algorithm.

Step 1: Use µ0 as an initial value of µ,

Step 2: η̂ is a solution to the likelihood equation of canonical form (3.10),

Step 3: µ̂ is the maximizer of the profile log-likelihood (3.11),

Step 4: Check convergence. If not, go to step 2.

3.3. Model checking

In this section, we concern about how to choose an appropriate model among l-axial exponential

family of distributions. The first approach is a graphical one and the second method is a theoretical

one.

One rough graphical approach is to use a circular data plot with a pdf plot of l-axial exponential

family of distributions. A little bit enhanced method uses Healy’s plot (Healy, 1968). Healy’s plot

is based on

di = r tan
l(θ∗i − µ)

cp
, (i = 1, . . . , n). (3.12)

In addition, di is sampled from exponential family of distributions if the fitted model is appropriate.

Practically the exact parameter values in equation (3.12) need to be replaced by estimates. Above

di then sorted and plotted against exponential family of distributions percentage points. Similarly,

the cumulative probabilities of an exponential family of distributions can be plotted against their

nominal values 1/n, 2/n, . . . , 1; the points should lie on the bisection line of the quadrant.

The above approaches are graphical methods, whereas the following one is a theoretical one. Suppose

θ∗ follows a member of the l-axial exponential family of distributions and we wish to test the

hypothesis,

H0 : Fθ∗(θ
∗) = F0(θ

∗) ∀ x vs. H1 : ∃ x such that Fθ∗(θ
∗) ̸= F0(θ

∗),

where F0(θ
∗) is given by (2.4). Then the Kolmogorov-Smirnov test (Lehmann and Romano, 2005))

can be adopted. Given a random sample of size n, θ∗ = (θ∗1 , . . . , θ
∗
n), from the l-axial exponential

family of distributions, we first arrange those in increasing order of magnitude. The empirical

distribution function is defined by

F̂n(θ
∗) =


0, if θ∗ < θ∗(1),

i

n
, if θ∗(i) ≤ θ∗ < θ∗(i+1),

1, if θ∗(n) ≤ θ∗.

The value of Kolmogorov-Smirnov statistic is defined by

Dn = sup
θ∗

√
n
∣∣∣F̂n(θ∗)− F0(θ

∗)
∣∣∣ .

The Kolmogorov-Smirnov test rejects the null hypothesis if Dn > sn,1−α, where sn,1−α is the 1−α

quantile of the null distribution of Dn when F0 is the uniform U(0, 1) distribution (Smirnov, 1948).
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Figure 4.1. Circular data plot of samples of orientations of termite mounds

The finite sampling distribution of Dn under F0 is the same for all continuous F0, but its exact

form is difficult to express. By the duality of tests and confidence regions, the Kolmogorov-Smirnov

test can be inverted to yield uniform confidence bands for F , given by

Rn,1−α =

{
F : sup

θ∗

√
n
∣∣∣F̂n(θ∗)− F (θ∗)

∣∣∣ ≤ sn,1−α

}
.

By construction, PF {F ∈ Rn,1−α} = 1 − α if F is continuous. Therefore, the confidence band is

then

max
{
0, F̂n(θ

∗)− sn,1−α
}
≤ F (θ∗) ≤ min

{
1, F̂n(θ

∗) + sn,1−α
}
.

4. Real Data Analysis

Figure 4.1 shows samples of orientations of termite mounds of Amitermes laurensis and their mean

orientations, at 10th site in Cape York Peninsula, North Queensland (Fisher, 1993). It is of interest

to determine whether the mean orientations are consistent. However we consider only fitting our

suggested model to this data. To fit the data using well-known von Mises model, we need to

convert them to vectors first and then fit them using von Mises model since the data are axial.

Because of this cumbersome data transformation, we suggested semicircular models to fit any axial

data directly. Among them, we use the semicircular normal distribution to fit the data. For this

data set, the corresponding maximum likelihood estimates are given by µ̂ = 3.01, and φ̂ = 0.167.

Histogram with the estimated pdf and Healy’s plot (Healy, 1968) are shown in Figure 4.2. A visual

inspection of Figure 4.2 indicates a satisfactory fit of the density to the data.

5. Conclusion

We derived the 4-axial (or semicircular) exponential family of distributions via the projection of

the exponential family of distributions over a quarter-circular (or semicircular) segment. Then we

extended it to the l-axial exponential family of distributions using the simple transformations for
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Figure 4.2. (a) Histogram with the estimated pdf and (b) Healy’s plot

modeling any arc of arbitrary length say 2π/l for l = 1, 2, . . .. Occasionally, measurements result

in any arc of arbitrary length. A derived new family of the distributions can be used to model

symmetric or skewed angular data. Asymptotic results reveal that linear exponential family of

distributions can be used to approximate the l-axial exponential family of distributions. Some basic

properties of the l-axial exponential family of distributions are introduced.

Trigonometric moments are derived for members of l-axial exponential family of distributions. We

find that, by a simple transformation, the kth sine(cosine) moment of the semicircular exponential

family of distributions is the same as the 2kth sine(cosine) moment of the 4-axial exponential family

of distributions because of the transformation we are using. Furthermore the kth sine(cosine)

moment of the circular exponential family of distributions is the same as the 2kth sine(cosine)

moment of the semicircular exponential family of distributions.

When a location parameter is known, we suggested how to develop a general maximum likelihood

estimator and how to do hypothesis tests. Confidence intervals are also developed by the duality

of tests and confidence intervals. To validate all these theoretical results, an ad hoc approach is

suggested using a good estimates of a location parameter µ. When both parameters are unknown,

we derived the mles of unknown parameters using by direct minimization of the minus log-likelihood

itself. A profile likelihood approach is also introduced. For model checking, a graphical approach

and a theoretical approach are adopted. To demonstrate our proposed model we applied semicircular

normal distribution to the samples of orientations of termite mounds of Amitermes laurensis, and

their mean orientations, at 10th site in Cape York Peninsula, North Queensland (Fisher, 1993). A

visual inspection of Healy’s plot indicates a satisfactory fit of the density to the data.

As a future study, we mention some general comments. We only considered the exponential family of

distributions, but eventually all continuous distributions can be transformed to l-axial distributions.

For example, let X ∼ U(0, 1), then take the same projection method so far, i.e., X = r tan(θ). The

pdf becomes

f(θ) = r sec2(θ), 0 < θ < tan−1

(
1

r

)
.
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As mentioned earlier, we assume without loss of generality r = 1, then the support of θ becomes

(0, π/4). Similar to previous approach, let θ∗ = 8θ/l, then the pdf of θ∗ becomes

f(θ∗) =
l

8
sec2

(
lθ∗

8

)
, 0 < θ∗ <

2π

l
,

which is the pdf of l-axial uniform distribution. Furthermore, this type of linear bounded support

also happen at the exponential family. For example the beta distribution has the same support as

the uniform distribution on (0, 1). We can develop l-axial beta distribution even though support is

not ℜ or ℜ+. Let X = r tan(θ), then the pdf becomes

f(θ;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
(r tan(θ))α−1(1− r tan(θ))β−1r sec2(θ), 0 < θ < tan−1

(
1

r

)
.

As mentioned earlier, we can assume without loss of generality r = 1, then the support of θ becomes

(0, π/4). Similar to previous approach, let θ∗ = 8θ/l, then the pdf of θ∗ becomes

f(θ∗;α, β) =
Γ(α+ β)

Γ(α)Γ(β)

(
tan

lθ∗

8

)α−1 (
1− tan

lθ∗

8

)β−1

sec2
(
lθ∗

8

)
, 0 < θ∗ <

2π

l
,

which is the pdf of l-axial beta distribution.
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