• Title/Summary/Keyword: L-P model

Search Result 1,404, Processing Time 0.031 seconds

Impact of Cassia acutifolia Infusion on Glucose Levels in Obesity and Diabetes Rat Model

  • Raffoul-Orozco, Abdel Kerim;Avila-Gonzalez, Ana Elisa;Barajas-Vega, Jessica Lucia;Rodriguez-Razon, Christian Martin;Garcia-Cobian, Teresa Arcelia;Ramirez-Lizardo, Ernesto Javier;Rubio Arellano, Edy David
    • Journal of Pharmacopuncture
    • /
    • v.20 no.3
    • /
    • pp.201-206
    • /
    • 2017
  • Objectives: The aim of this study was to investigate the effects of Cassia acutifolia on the obesity and the glucose levels in a rat model of obesity and diabetes. Methods: By random selection, 36 Wistar male rats were divided in two control groups, the positive and the negative control groups, and into four experimental groups receiving different infusions of Cassia acutifolia in water ad libitum. Results: The results revealed a statistically significant anti-obesogenic effect (P = 0.02), although this was not considered clinically significant. Additionally, Cassia acutifolia lowered the glucose levels by 30 mg/dL to 90 mg/dL (P = 0.05). However, we observed adverse effects in the liver, a two-fold increase in transaminase levels (P = 0.002), and in the kidneys, decreased creatinine levels (P = 0.001), and these adverse effects had no viable explanation. Conclusion: Cassia acutifolia has anti-hyperglycemic effects in obese diabetic rats. However, Cassia acutifolia also has adverse effects, so it should not be administered to patients.

An experimental-computational investigation of fracture in brittle materials

  • De Proft, K.;Wells, G.N.;Sluys, L.J.;De Wilde, W.P.
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.227-248
    • /
    • 2004
  • A combined experimental-computational study of a double edge-notched stone specimen subjected to tensile loading is presented. In the experimental part, the load-deformation response and the displacement field around the crack tip are recorded. An Electronic Speckle Pattern Interferometer (ESPI) is used to obtain the local displacement field. The experimental results are used to validate a numerical model for the description of fracture using finite elements. The numerical model uses displacement discontinuities to model cracks. At the discontinuity, a plasticity-based cohesive zone model is applied for monotonic loading and a combined damage-plasticity cohesive zone model is used for cyclic loading. Both local and global results from the numerical simulations are compared with experimental data. It is shown that local measurements add important information for the validation of the numerical model. Consequently, the numerical models are enhanced in order to correctly capture the experimentally observed behaviour.

Transport Phenomena in Solid State Fermentation: Oxygen Transport in Static Tray Fermentors

  • Muniswaran, P.K.A.;Moorthy, S.Sundara;Charyulu, N.C.L.N.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.6
    • /
    • pp.362-366
    • /
    • 2002
  • A mathematical model has been developed for describing the oxygen concentration during the exponential growth of microorganisms, in a static solid substrate bed supported on a tray fermentor. The model equations comprise of one partial differential equation for mass transfer and an ordinary differential equation of growth. After nondimensionlisation, analytical solution tn the model has been obtained by the method of Laplace transforms. An expression for critical thickness of bed is deduced from the model equation. The significance of the model in the design of tray fermentors is discussed. The validity of the discussion is verified by taking an illustration from the literature.

Effects of Activated Carbon Particle Sizes on Caffeine Adsorptions (활성탄 입자 크기가 카페인 흡착에 미치는 영향)

  • Kim, Tae-Yang;Do, Si-Hyun;Hong, Seong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.3
    • /
    • pp.407-414
    • /
    • 2015
  • The effect of activated carbon particle diameter (i.e. US sieve No. $8{\times}10$ ($d_p{\approx}2.19mm$), $18{\times}20$ ($d_p{\approx}0.92mm$), $50{\times}60$ ($d_p{\approx}0.27mm$) and $170{\times}200$ ($d_p{\approx}0.081mm$) on caffeine adsorption is investigated. BET surface area was increased with decreasing particle diameter ($d_p$), and caffeine adsorption rates increased with decreasing $d_p$. Moreover, pseudo-second order model is predicted the experimental data more accurately than pseudo-first order model, and the fastest rate constant ($k_2$) was $1.7g\;mg^{-1}min^{-1}$ when $d_p$ was 0.081 mm. Surface diffusion coefficient (Ds) was decreased with decreasing $d_p$ based on the minimum sum of square error (SSE). Practically, certain ranges of Ds are acceptable with high reliability ($R^2$) and it is determined that the effect of $d_p$ on Ds is unclear. The effect of pH on caffeine adsorption indicated the dependency of m/L ratio (mass liquid ratio) and $pH_{pzc}$. The $pH_{pzc}$ (i.e. $7.9{\pm}0.2$) was not affected by $d_p$. The higher caffeine adsorption at pH 4 and pH 7 than at pH 10 is due to $pH_{pzc}$, not $pk_a$ of caffeine.

Modulation Effects on Acute Orofacial Inflammatory Pain in Rats by Curcuma longa L., Curcuma aromatica Salisb., Zingiber officinale Rosc. Extracts

  • Kim, Hee-Jin;Choi, Ja-Hyung;Kim, Hye-Jin;Yoon, Hyun-Soe;Lee, Min-Kyung
    • Biomedical Science Letters
    • /
    • v.25 no.3
    • /
    • pp.247-255
    • /
    • 2019
  • Curcuma longa L. (C.L), Curcuma aromatica Salisb. (C.A) and Zingiber officinale Rosc. (Z.O) of Zingiberaceae plants which are well known as effects of natural anti-oxidant, anti-cancer and anti-inflammatory. We examined that the Zingiberaceae plants are involved in development and modulation of orofacial pain in rats. Male, 7- to 8-week-old, Sprague-Dawley rats weighing 240~280 g were used in this study. Experiments were performed using acute pain model that was caused by the injection of 5% formalin into the right vibrissa pad. The number of scratching or rubbing to the injection site was recorded for 9 consecutive 5-minute intervals following injection of formalin. The experimental groups were acute orofacial inflammatory pain; control group (formalin, 5%), vehicle group (5% formalin after sodium carboxymethyl cellulose), single administration group, single mixed administration group, repeated administration group. The experiments were performed various concentrations of Zingiberaceae plants extract. Therefore, oral administration of C.L, C.A, and Z.O (p.o., concentrations of 12.5, 25 mg/mL) in orofacial inflammatory pain model substantially decrease the nociceptive behavior in a concentration dependent manner. And it tended to decrease at low concentration (12.5 mg/mL) of single mixed and repeated administration more than single administration. This result means that Zingiberaceae plants extract affects the modulation of acute orofacial inflammatory pain. Thus, Zingiberaceae plants extract may be a potential therapeutic treatment for orofacial inflammatory pain.

Comparison of Rolling Element Loads and Stress-based Fatigue Life Predictions for Ball Bearings (볼 베어링의 전동체 기반 및 응력 기반 접촉 피로수명의 비교)

  • Kwak, Jae Seob;Park, Yong Whan;Kim, Chan Jung;Kim, Tae Wan
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.371-377
    • /
    • 2020
  • In In this study, we compared the results of a ball bearing life prediction model based on rolling element loads with the results of fatigue life prediction of ball bearings when a stress-based contact fatigue life prediction technique is applied to the ball bearing. We calculate the load acting on each rolling element by the external load of the bearing and apply the result to the Lundberg-Palmgren (LP) theory to calculate ball bearing life based on the rolling element. We also calculate stress-based ball bearing life through contact and fatigue analyses based on contact modeling of the ball and raceway while considering the fatigue test results of AISI 52100 steel. In stress-based life prediction, we use three high-cycle fatigue-determination equations that can predict the fatigue life when multi-axis proportional loads such as rolling-slide contact conditions are applied. These equations are derived from the stress invariant and critical plane methods and the mesoscopic approach. Life expectancy results are compared with those of the LP model. Results of the analysis indicated that the fatigue life was predicted to be lower in the order of the Crossland, Dang Van, and Matake models. Of the three, the Dang Van fatigue model was found to be the closest to the LP life.

The Uranium Removal in Groundwater by Using the Bamboo Charcoal as the Adsorbent (대나무 활성탄을 흡착제로 활용한 오염지하수 내 우라늄 제거)

  • Lee, Jinkyun;Kim, Taehyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.531-542
    • /
    • 2018
  • Batch sorption experiments were performed to remove the uranium (U) in groundwater by using the bamboo charcoal. For 2 kinds of commercialized bamboo charcoals in Korea, the U removal efficiency at various initial U concentrations in water were investigated and the optimal sorption conditions to apply the bamboo charcoal were determined by the batch experiments with replicate at different pH, temperature, and reaction time conditions. From results of adsorption batch experiments, the U removal efficiency of the bamboo charcoal ranged from 70 % to 97 % and the U removal efficiency for the genuine groundwater of which U concentration was 0.14 mg/L was 84 %. The high U removal efficiency of the bamboo charcoal maintained in a relatively wide range of temperatures ($10{\sim}20^{\circ}C$) and pHs (5 ~ 9), supporting that the usage of the bamboo charcoal is available for U contaminated groundwater without additional treatment process in field. Two typical sorption isotherms were plotted by using the experimental results and the bamboo charcoal for U complied with the Langmuir adsorption property. The maximum adsorption concentration ($q_m:mg/g$) of A type and C type bamboo charcoal in the Langmuir isotherm model were 200.0 mg/g and 16.9 mg/g, respectively. When 2 g of bamboo charcoal was added into 100 mL of U contaminated groundwater (0.04 ~ 10.8 mg/L of initial U concentration), the separation factor ($R_L$) and the surface coverage (${\theta}$) maintained lower than 1, suggesting that the U contaminated groundwater can be cleaned up with a small amount of the bamboo charcoal.

Effect of Output-conductance on Current-gain Cut-off frequency in In0.8Ga0.2As High-Electron-mobility Transistors (In0.8Ga0.2As HEMT 소자에서 Output-conductance가 차단 주파수에 미치는 영향에 대한 연구)

  • Rho, Tae-Beom;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.324-327
    • /
    • 2020
  • The impact of output conductance (go) on the short-circuit current-gain cut-off frequency (fT) in In0.8Ga0.2As high-electron-mobility transistors (HEMTs) on an InP substrate was investigated. An attempted was made to extract the values of fT in a simplified small-signal model (SSM) of the HEMTs, derive an analytical formula for fT in terms of the extrinsic model parameters of the simplified SSM, which are related to the intrinsic model parameters of a general SSM, and verify its validity for devices with Lg from 260 to 25 nm. In long-channel devices, the effect of the intrinsic output conductance (goi) on fT was negligible. This was because, from the simplified SSM perspective, three model parameters, such as gm_ext, Cgs_ext and Cgd_ext, were weakly dependent on goi. However, in short-channel devices, goi was found to play a significant role in degrading fT as Lg was scaled down. The increase in goi in short-channel devices caused a considerable reduction in gm_ext and an overall increase in the total extrinsic gate capacitance, yielding a decrease in fT with goi. Finally, the results were used to infer how fT is influenced by goi in HEMTs, emphasizing that improving electrostatic integrity is also critical importance to benefit fully from scaling down Lg.

Effects of Humic Acid on the pH-dependent Sorption of Europium (Eu) to Kaolinite (PH 변화에 따른 카올리나이트와 유로퓸(Eu)의 흡착에 대한 휴믹산의 영향)

  • Harn, Yoon-I;Shin, Hyun-Sang;Rhee, Dong-Seok;Lee, Myung-Ho;Chung, Euo-Cang
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.4
    • /
    • pp.23-32
    • /
    • 2009
  • The sorption of europium (Eu (III)) onto kaolinite and the influence of humic acids over a range of pH 3 ~ 11 has been studied by batch adsorption experiment (V/m = 250 : 1 mL/g, $C_{Eu(III)}\;=\;1\;{\times}\;10^{-5}\;mol/L$, $C_{HA}\;=\;5{\sim}50\;mg/L$, $P_{CO2}=10^{-3.5}\;atm$). The concentrations of HA and Eu(III) in aqueous phase were measured by UV absorbance at 254nm (e.g., $UV_{254}$) and ICP-MS after microwave digestion for HA removals, respectively. Results showed that the HA sorption onto kaolinite was decreased with increasing pH and their sorption isotherms fit well with the Langmuir adsorption model (except pH 3). Maximum amount ($q_{max}$) for the HA sorption at pH 4 to 11 was ranged from 4.73 to 0.47 mg/g. Europium adsorption onto the kaolinite in the absence of HA was typical, showing an increases with pH and a distinct adsorption edge at pH 3 to 5. However in the presence of HA, Eu adsorption to kaolinite was significantly affected. HA was shown to enhance Eu adsorption in the acidic pH range (pH 3 ~ 4) due to the formation of additional binding sites for Eu coming from HA adsorbed onto kaolinite surface, but reduce Eu adsorption in the intermediate and high pH above 6 due to the formation of aqueous Eu-HA complexes. The results on the ternary interaction of kaolinte-Eu-HA are compared with those on the binary system of kaolinite-HA and kaolinite-Eu and adsorption mechanism with pH was discussed.

Development of a model to predict vancomycin serum concentration during continuous infusion of vancomycin in critically ill pediatric patients

  • Yu Jin Han;Wonjin Jang;Jung Sun Kim;Hyun Jeong Kim;Sung Yun Suh;Yoon Sook Cho;June Dong Park;Bongjin Lee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.121-127
    • /
    • 2024
  • Vancomycin is a frequently used antibiotic in intensive care units, and the patient's renal clearance affects the pharmacokinetic characteristics of vancomycin. Several advantages have been reported for vancomycin continuous intravenous infusion, but studies on continuous dosing regimens based on patients' renal clearance are insufficient. The aim of this study was to develop a vancomycin serum concentration prediction model by factoring in a patient's renal clearance. Children admitted to our institution between July 1, 2021, and July 31, 2022 with records of continuous infusion of vancomycin were included in the study. Sex, age, height, weight, vancomycin dose by weight, interval from the start of vancomycin administration to the time of therapeutic drug monitoring sampling, and vancomycin serum concentrations were analyzed with the linear regression analysis of the mixed effect model. Univariable regression analysis was performed using the vancomycin serum concentration as a dependent variable. It showed that vancomycin dose (p < 0.001) and serum creatinine (p = 0.007) were factors that had the most impact on vancomycin serum concentration. Vancomycin serum concentration was affected by vancomycin dose (p < 0.001) and serum creatinine (p = 0.001) with statistical significance, and a multivariable regression model was obtained as follows: Vancomycin serum concentration (mg/l) = -1.296 + 0.281 × vancomycin dose (mg/kg) + 20.458 × serum creatinine (mg/dl) (adjusted coefficient of determination, R2 = 0.66). This prediction model is expected to contribute to establishing an optimal continuous infusion regimen for vancomycin.