• Title/Summary/Keyword: L 추정

Search Result 1,738, Processing Time 0.026 seconds

L-Estimation for the Parameter of the AR(l) Model (AR(1) 모형의 모수에 대한 L-추정법)

  • Han Sang Moon;Jung Byoung Cheal
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.1
    • /
    • pp.43-56
    • /
    • 2005
  • In this study, a robust estimation method for the first-order autocorrelation coefficient in the time series model following AR(l) process with additive outlier(AO) is investigated. We propose the L-type trimmed least squares estimation method using the preliminary estimator (PE) suggested by Rupport and Carroll (1980) in multiple regression model. In addition, using Mallows' weight function in order to down-weight the outlier of X-axis, the bounded-influence PE (BIPE) estimator is obtained and the mean squared error (MSE) performance of various estimators for autocorrelation coefficient are compared using Monte Carlo experiments. From the results of Monte-Carlo study, the efficiency of BIPE(LAD) estimator using the generalized-LAD to preliminary estimator performs well relative to other estimators.

A Study on the Estimation of Standard Deviation of Least Absolute Deviation Estimators of Regression Coefficients (회귀계수의 최소절대편차추정량의 표준편차 추정법)

  • 이기훈;정성석
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.2
    • /
    • pp.463-473
    • /
    • 2001
  • 선형모형의 회귀계수의 L$_1$-추정량의 점근분포는 오차항의 중앙값에 종속되어있는데, 이 값은 잔차의 순서통계량의 함수로 추정될 수 있다. 본 논문에서는 오차항 중앙값의 추정량을 유도하는 몇 가지 방법을 소개하고 몬테칼로 실험을 통하여 가장 바람직한 추정량의 형태를 제안하였다. 또한 제안한 추정량을 이용하면 검정문제에서도 좋은 결과를 얻을 수 있음을 보였다.

  • PDF

Algorithm for the L1-Regression Estimation with High Breakdown Point (L1-회귀추정량의 붕괴점 향상을 위한 알고리즘)

  • Kim, Bu-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.4
    • /
    • pp.541-550
    • /
    • 2010
  • The $L_1$-regression estimator is susceptible to the leverage points, even though it is highly robust to the vertical outliers. This article is concerned with the improvement of robustness of the $L_1$-estimator. To improve its robustness, in terms of the breakdown point, we attempt to dampen the influence of the leverage points by means of reducing the weights corresponding to the leverage points. In addition the algorithm employs the linear scaling transformation technique, for higher computational efficiency with the large data sets, to solve the linear programming problem of $L_1$-estimation. Monte Carlo simulation results indicate that the proposed algorithm yields $L_1$-estimates which are robust to the leverage points as well as the vertical outliers.

Adaptive L-estimation for regression slope under asymmetric error distributions (비대칭 오차모형하에서의 회귀기울기에 대한 적합된 L-추정법)

  • 한상문
    • The Korean Journal of Applied Statistics
    • /
    • v.6 no.1
    • /
    • pp.79-93
    • /
    • 1993
  • We consider adaptive L-estimation of estimating slope parameter in regression model. The proposed estimator is simple extension of trimmed least squares estimator proposed by ruppert and carroll. The efficiency of the proposed estimator is especially well compared with usual least squares estimator, least absolute value estimator, and M-estimators designed for asymmetric distributions under asymmetric error distributions.

  • PDF

Derivation of Relationship between Cross-site Correlation among data and among Estimators of L-moments for Generalize Extreme value distribution (Generalized Extreme Value 분포 자료의 교차상관과 L-모멘트 추정값의 교차상관의 관계 유도)

  • Jeong, Dae-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.259-267
    • /
    • 2009
  • Generalized Extreme Value (GEV) distribution is recommended for flood frequency and extreme rainfall distribution in many country. L-moment method is the most common estimation procedure for the GEV distribution. In this study, the relationships between the cross-site correlations between extreme events and the cross-correlation of estimators of L-moment ratios (L-moment Coefficient of Variation (L-CV) and L-moment Coefficient of Skewness (L-CS)) for data generated from GEV distribution were derived by Monte Carlo simulation. Those relationships were fit to the simple power function. In this Monte Carlo simulation, GEV+ distribution were employed wherein unrealistic negative values were excluded. The simple power models provide accurate description of the relationships between cross-correlation of data and cross-correlation of L-moment ratios. Estimated parameters and accuracies of the power functions were reported for different GEV distribution parameters combinations. Moreover, this study provided a description about regional regression approach using Generalized Least Square (GLS) regression method which require the cross-site correlation among L-moment estimators. The relationships derived in this study allow regional GLS regression analyses of both L-CV and L-CS estimators that correctly incorporate the cross-correlation among GEV L-moment estimators.

Sparse Channel Estimation using weighted $l_1$-minimization (Weighted $l_1$-최소화기법을 이용한 Sparse한 채널 추정 기법)

  • Kwon, Seok-Beop;Ha, Mi-Ri;Shim, Byong-Hyo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.50-52
    • /
    • 2010
  • 통신 시스템의 성능을 향상시키는 핵심 문제 중에 하나인 채널을 추정하는 문제는 다양한 분야에서 연구되고 있다. 채널의 sparse한 특징으로 인해 기존의 linear square나 minimum mean square error보다 발전된 $l_1$-norm minimization 방법 등이 많이 연구되고 있다. 이에 본 논문은 sparse한 채널의 특징과 천천히 변화하는 채널환경 특징을 이용하여 기존의 방법에 비해 더 높은 성능의 채널 추정 기법을 연구한다. 천천히 변화하는 채널환경의 특징으로 인해 이전 채널 정보를 현재 채널 추정에 사용할 수 있고 sparse한 채널의 특징으로 $l_1$-norm minimization을 사용할 수 있다. 이러한 두 가지의 정보를 이용하여 weighted $l_1$-norm minimization 이용한 support detection후 MMSE를 이용한 채널 추정기법을 연구한다.

  • PDF

Hydrologic Response Estimation Using Mallows' $C_L$ Statistics (Mallows의 $C_L$ 통계량을 이용한 수문응답 추정)

  • Seong, Gi-Won;Sim, Myeong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.4
    • /
    • pp.437-445
    • /
    • 1999
  • The present paper describes the problem of hydrologic response estimation using non-parametric ridge regression method. The method adapted in this work is based on the minimization of the $C_L$ statistics, which is an estimate of the mean square prediction error. For this method, effects of using both the identity matrix and the Laplacian matrix were considered. In addition, we evaluated methods for estimating the error variance of the impulse response. As a result of analyzing synthetic and real data, a good estimation was made when the Laplacian matrix for the weighting matrix and the bias corrected estimate for the error variance were used. The method and procedure presented in present paper will play a robust and effective role on separating hydrologic response.

  • PDF

A comparison study of various robust regression estimators using simulation (시뮬레이션을 통한 다양한 로버스트 회귀추정량의 비교 연구)

  • Jang, Soohee;Yoon, Jungyeon;Chun, Heuiju
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.3
    • /
    • pp.471-485
    • /
    • 2016
  • Least squares (LS) regression is a classic method for regression that is optimal under assumptions of regression and usual observations. However, the presence of unusual data in the LS method leads to seriously distorted estimates. Therefore, various robust estimation methods are proposed to circumvent the limitations of traditional LS regression. Among these, there are M-estimators based on maximum likelihood estimation (MLE), L-estimators based on linear combinations of order statistics and R-estimators based on a linear combinations of the ordered residuals. In this paper, robust regression estimators with high breakdown point and/or with high efficiency are compared under several simulated situations. The paper analyses and compares distributions of estimates as well as relative efficiencies calculated from mean squared errors (MSE) in the simulation study. We conclude that MM-estimators or GR-estimators are a good choice for the real data application.

Derivation of relationship between cross-site correlation among flows and among estimators of L-moments for GEV and GLO distribution (GEV와 GLO 분포의 유출량 교차상관과 L-moment 추정값의 교차상관의 관계 유도)

  • Jeong, Dae-Il;Stedinger, Jery R.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.321-325
    • /
    • 2007
  • 3개의 매개변수(location, scale, shape)로 이루어진 GEV와 GLO 분포는, 미국의 공식적인 홍수빈도 분포인 Log Pearson Type III와 함께 수문분야에서 중요한 위치를 차지하고 있다. 본 연구에서는 Monte Carlo 실험을 이용하여 GEV와 GLO 분포에서 서로 다른 두 지점의 유출량 자료를 생성하여 L-CV(L-moment Coefficient of Variation; $\tau_2$)와 L-CS(L-moment Coefficient of Skewness; $\tau_3$)를 추정하였으며, L-moment 추정값들 간의 교차상관$(\tau_2-\tau_2,\;\tau_3-\tau_3,\;\tau_2-\tau_3)$과 유출량 자료간의 교차상관의 관계를 Simple Power 함수를 이용하여 유도하였다. 실험 과정에서 GEV와 GLO 분포가 비현실적인 음수 유출량을 생성하여, 실험 결과에 큰 영향이 있음을 확인하여, 두 분포에서 생성된 유출량 자료에서 음수값을 제외한 GEV+와 GLO+ 분포를 이용하여 관계식을 유도하고 이를 GEV와 GLO 분포의 결과와도 비교하였다. 본 연구에서 도출된 관계식은 향후 Generalized Least Square 회귀식을 이용하여 홍수분포의 지역 매개변수를 추정하기 위해 활용성이 클 것으로 기대한다.

  • PDF