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Adaptive L-Estimation for Regression
Slope under Asymmetric Error Distributions!)

Sang Moon Han2)

Abstract

We consider adaptive L-estimation of estimating slope parameter in
regression model. The proposed estimator is simple extension of trimmed
least squares estimator proposed by Ruppert and Carroll. The efficiency
of the proposed estimator is especially well compared with usual least
squares estimator, least absolute value estimator, and M-estimators
designed for asymmetric distributions under asymmetric etror distributions.

1. INTRODUCTION

In the last thirty years a large amount of work has been done in the area of
robustness. A large number of procedures have been proposed as alternatives to
the classical least squares procedure. Of these perhaps the main classes are the
so—called M-, L- and R-classes( see eg. Huber(1981), Hogg(1979), Hogg,
et.al(1988)).  M-estimators generalized in a very natural way from the location
model to the regression model(e.g. Huber(1973)). R-estimators were generalized by
Jureckova(1971), Jaeckel(1972), Adichie(1974), Hettmansperger and McKean(1977).

L-estimators were first proposed for the regression case by Bickel(1973).
Although his estimators had the right asymptotic behaviour they have complex
forms and also difficult to compute. Moreover they are not invariant with respect
to a reparameterization of the design.

Koenker and Bassett(1978) suggested an alternative approach to L-estimators
that is not based on an ordering of the residuals from a preliminary fit They
define so called regression quantiles as M-estimators with a particular defining
check function and then use these to define regression trimmed means in a very
natural way. Although they concentrated on trimmed means, more general
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L-estimators can be defined in a straightforward way. Their estimators also have
the right asymptotic behaviour as well as being invariant wrt reparameterization
of the design. In addition they can be computed easily using modifications of
L;-programs. These estimators are the first practically useful examples of
regression L-estimators.

Now we mention briefly about regression quantiles and trimmed least squares
directly related to our work. Consider the regression model

y¥y=XB+z (1.1

where ¥ = (y1,,ya), X is nXp matrix of known constants whose i-th row
is X;', B = (Bo,By,Bp-1)’ is a vector of unknown parameters, and 2 =
(21, ,2n) is a vector of independent, identically distributed random variables

with unknown distribution function F.

The basis of the definition of regression quantiles is the fact that the ordinary
sample quantiles(order statistics) for the location model may be found as
M-estimators with check function

Po={ % 20

(8-1)x x<0 1-2)

where 6 ¢ (0,1). This can easily be generalized to the model (1.1). Let K()
denote the 0-th regression quantile, then K(0) solves the minimization problem

h‘g‘;p‘_g?a(w— xi'D) (1.3)

Using this, Koenker and Bassett(1978) suggested the following trimmed mean.
For 0 < p; < pz <1 let K(p1), K(pz) denote the p;-th and pz-th regressing
quantiles. Define
_[1 if xi’K(p1)<y:i< xi'K(ps)
a'_{O otherwise. (149
The regression trimmed mean L(p) is then the least squares estimator based

on those observations with a;=1 ie.

Lp)=(X'AX)X Ay (1.5)
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with A = diag(a;) and X the design matrix with rows Xx;’ ,i=1,~,n and
2=(p1,p2) .

Suppose X contains an intercept and n'X 'X — Q as n — o, with Q positive
definite and ¢; and {2 be respectively pi-th and pz-th quantile of underlying

distribution F. Under certain technical assumptions, Ruppert and Carroll(1980)
showed that

a(L(p)-8-5() L2 N, o*(aPe)

with lz. denoting convergence in distribution ,

[ 43 )
_&(p)=((pz-p1)'1-|'{ xdF(x),0,~,0))  and o%(pF) the asymptotic variance of

the p1-th and (1- pz)-th trimmed mean in the location case. These results will
be used for asymptotics for our estimator.

2. Motivation and large sample properties of the proposed estimator

Before starting this section, we introduce some notation and assumptions which
are imposed for all lemmas, theorems and corollary in this section. Although y,

X, and =z in (1.1) depend on n, this is not made explicit in the notation. Let
2=(1,0,+,0)" be (px1), and let I, be the ( pXp) identity matrix. Whenever r
is scalar, I=re. For 0 < p; <1, define & = F!(py. Let No(uX)

denote the p-variate normal distribution with mean vector 4 and

variance-covariance matrix Y. We also make the following assumptions about the
family A of distributions in what follows.

Al. F has a continuous density f and Ax)>0 for all FEA .
A2. Let x;=(xaxz ~,Xp) be the i-th row of X and x3=1, i=12,n and

3 xi=0, j=23,.p .
i=1
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A3. '1'112( ,-sm,;‘fﬁ,,n'wlxgl)=0 .
A4. There exists a positive definite matrix Q such that ’l'i_r.r;n'l(X 'X)=Q.

A5. Assuming B¢ be preliminary fit, then Vn( Bo-8-62)=0,(1) for some
constant © .

Motivation of our estimator is as follows ; Assume 0<po<p;< - <px=qo<l.
Moreover, let K(p;) be the corresponding p;-th regression quantiles. Then for
i=1,2,-,n, define

ar= {1 if xi'K(po)<y:i< xi’K(py)
! if otherwise

= {1 if x;i'K(py)<y:< x;'K(p3)
2 10 if otherwise (2.1)

ax= {1. if xi'K(px-1)<yiS xi'K(pi)

0 if otherwise .
Let L( p1), L( p3), =, L( px) be the least squares estimators based on those
observations with a;=1,a2=1, -~,ax=1 respectively. That is,
L(p)= (X AX)X Ay,
L( p2)= (.X AX)X Azy , (2.2)
L(p)= (X AKX Ay
where A;=diag(a;) for i=1,2,~ k and X design matrix with rows Xx;’ for
i=1,2,,n.

Then our estimator has the following form :
Bir=wiL( p1)+waLl( p2)+ - +wil( pg), with i;fiwi:l )

Therefore, our slope estimator can be obtained by just deleting the intercept part
from L( pp),~,L( px). Let us denote these (p-1) dimension estimators as

Lo( p1),,Lo( px). Then our slope estimator has the following form :
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Ci=w1Lo( p1)*wzLo( pg)+ ~ +wilol p¢), With gw,-=1. (2.3)

For practical application, with k=2, it is quite reasonable to give nearly equal
weights to w; and w3z if the true underlying distribution is similar to normal,
but we want to give more weight to w; or w2 if the true underlying distribution

is skewed to the left or right respectively . We will explain the method of
assigning the weights wj,wg, ,wx later. However, before that we state the
necessary theorems using the result of Ruppert and Carroll(1980).

Theorem 2.1 Fix k and po,py, ~,px such that p1-po=p2-DP1= " =Pk~ Pr-1=qk
then

ValBy- 8- Twis( 2] D N, 0w zme™
where 1w = (wywy ~,wi) , and for i=1,2,~ k and iSjsk
&
5¢( pi)=(q;‘_[(_xdF(x),0, -~-,0) ’
Y= (0“,') kX ky W‘.lth

o=a?(-2[ | Foder2t || Foode( [ :_lF(x)dx]Z},

oot ] pac ] o | £ oo  po)

Proof. From theorm 3 of Ruppert and Carroll(1980), we have the asymptotic
expansion

YnlL( p;)-8-35( pj)]=

QWa{ £ xil#; (z0)- Ea(z0]}0,(D

where for j=1,2, -k,
$i(2) =& 1/gx if z<&;,
=z/qx if & 1<2<¢;
=6,-/qk if 2>€j .
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Therefore
{f_l(Bk_.B.“ gw&(m)) = (2.4)
QA 5 Twde, (20~ Bo (01} +0,(1) .

If we let q’;c(zi)=’gwr[d)r(Zi)‘Eq’r(Z,’)] then in order to guarantee asymptotic

p-variate normality of the right hand side of above equation, it suffice to show

that for c€R?, W,.=.c’Q'1nwfix,~¢;(z.-) has asympototically univariate nomal.
s

Let Wia=c'Q'n"2 x;93(2;). Then

E(W »)=0

Var(W )=c’'Q'n™! x;Var(¢i(z:)) x:'Q'c
Hence E(W.)=0, Var(W,)—Var(¢i(z))}c'Q'c=(m'Zw)c’'Q'c as n—o
where X is variance-covariance of (9,(2),82(2), ~,8x(2)). By Lindeberg CL.T, it
suffice to show that for all ¢ >0,

1

Vo i_lj um.»«W)uﬂ""‘iF’" — 0 as no® (25)

Where F;, be distribution function of W . Note by our construction,

|#3(2)| <k for some positive number k. Then the left-hand side of (25) is
bounded by
K? J‘
VaW, 1) (maxiW o> eV Ve, )

2
chrW,, ,gﬁ'Q'l(n" X Xi Q' cP(maxlW | > ey VarW,) .

nlc'Qlx x;’'Q'c dF i

<

Note by condition A3,

P(max|W | > ¢y Varw,)

= P(maxvnlc’' Q! xi9°(z2)I>eYVarW,)— 0 as n —» © 26)

Conbining the result (2.6), the right hand of (25) goes to 0 as n—<. From the
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above result, the right hand side of (2.4) has asymptotically p-variate normal. By
straight forward calculation, it has mean vector 0 and variance-covariance matrix
(' Tw)Q"! and X is characterized by variance-covariance of ®;(2), i=12, - k.

Also by straightforward calculation, o¢; which is the variance of ¢i(2) and the

covariance oy of ¢;(z) and ®;(z) can be obtained as this the theorem states.

From theorem 2.1, we deduce the fact that Va(Cx~ 80) 2 N,-1(0,(m’ Zw)Qq"),
where 8o is obtained from B8 by deleting first component and Q' is obtained
from Q! by deleting first row and column.

Next we want to find minimizing weight w of the asymptotic variance of Cx.

But usually it is very difficult to estimate the asymptotic variance of Ck. So we
adopt the similar idea of Johns(1974) to approximate variance-covariance structure
Y and then find minimizing weight w. We approximate, for i=1,2 -k, as
follows;

0 ~ qithi(1-b;)d? 27

oy ~ gi’bi(1-b;)did; (2.8)
where di=¢;-¢;.1, bi=pi-1+%qx . Then the approximated variance-covariance
structure of X is given as follows ;

bi1(1-b;) bi(1-bz) - bi(1-by)
B=q2D bz(lz—bx) bz(l:bz) bz(l:‘bk) D

by(1-by) by(l-bg) ~ bx(1-bx)

Next we want to minimize the following quantity :

min (' Bu)Qqt

where 1 = (1, 1, .., 1). Because @' is fixed, we want to minimize w’'Bw

under the constraint w’l=1. By a straightforward Lagrange Multiplier argument,
we establish that
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Cl ' ’ - -3 1=

Tax[m’Bm-X(m’l—l)]=m’l—l=0 .

If we solve (2.9), we have A=2(1’'B!1)™! and this gives w=(1'B'1)'B!1
Using this minimizing weight, we get

M w'Bw=(1'B1™ .
With the minimizing weight given above, we define our slope estimator as given

by (2.3). If we define
e1=1/di(b2/bd1-1/d2)qx,
e;=1/d;(2/d;-1/di-1\-1/d;i1), i=2,3, k-1 ,
ex=1/dx(~1/dx— (1-bk-1)/(1-bx)di)qx,

then by straightforward calculation, we have the minimiging weight as

w,-=e,-/{gei} L i=12,k .

Let e} be a consistent estimator of e; by simply substituting d; for corresponding

consistent estimator d;. Then if we define w?=e,’/{ fie?} , (i=1,2 - ,k), then
<

our estimator is of the form
Ck=wILo( p1)+w§Lo( p2)+"'+w;‘¢Lo( Rk) . (2.10)

Finally we want to show that vn(Ci-8g) and Vn(Ci-Bg) has same limiting
distrisution. In order to do that we need consistent estimator of w;. Next theorem

is very useful in the construction of consistent estimators w], -, wx from residuals

of the preliminary fit.

Theorem 22 Let 0<po<p;<-,<px=qo<l and ¢ be the np;~th ordered
residuals from the preliminary fit [, which satisfies assumption AS5. Then, for
i=1,2,~ ,k, d;is consistent estimator of d;.
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Proof. Using Lemma 1 of Ruppert and Carroll(1980), we have for i=1,2, -k,

VA L=t = (eI ' 2 E0 (21 L) -e Y ( f-8) +0,(1)
and (211
Yn( &i1-&i)=[A& D] n'wigdi p-1(Zi~&i-)-e * nV2( fa-8)+0,(1)

where ¢o(x)=6-I(x<0). Therefore by subtracting two equations in (2.11), we

have
VA(di-d)= [REN ™ n 2 E0 ,(2i-20)- 212
[(A&i-1)] —1n-1/2§_1¢ pea(Zi-&i-1)+0,(1) .

By CL.T., each of the first two terms of the right hand side of (2.12) has a
limiting normal with finite variance. Therefore for i=1,2 -+, k, we have

&i—di=0p(1) .

From theorem 2.2, we have a consistent estimator of the difference of the two
population quantiles of the underlying distribution. This enables us to construct

consistent estimator Ci given by (2.10).

Corollary 2.1 Vn(Cx-Bg) and vn( Cx-Bg) have the same limiting distribution.
Proof. By construction of Cx and Cj, we get

VAl (Ce-Bo) - (Cr- o)1= g(wi—w;>ﬁLo(pi) . (2.13)

If we note that wi 2, w; and VnL(p;) is bounded in distribution, vr(Ci-Bg)
and Yn( Ci-Bg) have the same limiting distribution.

Remark In this section we show that theorem 2.1 leads to the basic conclusion
about the constructed estimators
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1. ‘The intercept estimate is asymptotically unbiased if F is symmetric about
zero, po=1-px, and symmetric weights are given;

2. The slope estimates are asymptotically unbiased even if F is asymmetric ;

3. The asymptotic covariance matrix ¥ depends on the choice of and regression
quantiles K(po),K(p1),,K(px) and in general it will be very difficult to

estimate and in our construction of slope estimator Ci, we use approximating
technique similar to Johns.

3. Monte Carlo study for slope estimators

In the pilot Monte Carlo study our slope estimator Cx for k=2 case called RHH

is not well worked under symmetric F compared with existing robust
M-estimators designed for symmetric. But RHH works pretty good compared
with existing estimators under asymmetric F.

We also study for k=3 and k=4 case. But in all cases the performance of our
estimator becomes poorer as k becomes large due to overadaptation. So our Monte
Carlo study concentrates on k=2 and asymmetric F. Even RHH using K(0.5) as

preliminary fit works pretty good under asymmetric F, we find prelimary fit is
very important to improve efficiency within our range of study. So we use

different preliminary fit from K(0.5) to get high efficiency within the range of our
study. Therefore we need a different version of o; and oy to get a little bit
different version of estimator RHH.

If we omit the condition p1-pPo=p2-P1=qz , Wwe get the following variance

~covariance structure of our two block estimator called SHH which is given as
follows ;

¢ &
0i=(r)? @[ | Flode-[, Floda?)
4] &
sg=ox=  (r)M-tia [, Fadeeti [, Flxodx

[ P [ Fooad |

for 1<i<j<2, where ri=p1-pe and rz=pz-p1. Let b1=pe*+05r; ,bz=p1+05r; ,
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di=&,-& , and dz=&2-&; . Then, by similar method as Johns(1974), we get
on~ri?1(1-b1)d? |, o1~(rirs) 'b1(1-bz)didz and oz~r2’ba(1-b2)d} . If we
define V3=by(1-b1)d? , Viz=bz(1-bz)d} and C=b1(1-bz)didz , we easily

obtain the w=(wy,wz) that minimizes

’ (rl)_z‘,l (rer)_l -1 "1=1 3
m( (rrs'C (re) Vs wQo , w'l=1 . 3.D

The solution of (3.1) is given by
wi= (r'f Vz—rlrzC)/(rszl—Zrl rzC+ T%Vz)
and
wa= (r%Vl—rlrzC)/(rszl-ZrerCﬂszz) .
By substituting the consistent estimatiors d; and d; of d) and dz from a good
preliminary fit, we get the consistent estimators mw=( w;, wz)’.
For SHH, we use K(0.275) instead of L, as our preliminary fit to get the
ordered residuals. The reason for the use of K(0.275) instead of L, is that our

pilot Monte Carlo study shows that K(0.275) has a much more reliable slope
estimator than L; when the underlying distributions are skewed to the right. We

use 5% trimming, say po=.05 p1=0275, p2=0.95 and sample sizes n=20, 40, 80
respectively. The first column of the design matrix X are equal to 1, and the
elements of the second column (x;) are taken to be typical normal deviates,
namely & '(i/n+1), where ¢! is the inverse of the standard normal cumulative
distribution function ¢. The second column of the design matrix X was
standardized so that 2>x?=1. The error distributions were generated from four
different distributions, ranging from extreme right skewed distribution (like
¥3(1)) to moderate right skewed distribution (like x*(8)). Using these' scheme
cited above, we study the estimated mean square error(MSE) for B; under a
simple regression model
‘ Yi=Bo+B1Xi*+Z:i
assuming Bo=p;=0 .
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If LS, is the L.S. slope estimator wusing observations such that
x:'K(0.05)<y;<x;"K(0275) and LS; is the LS. slope estimator using

observations such that x;'K(0.255)<y;< x;"K(0.95), then SHH is defined as

oWy w
SHE = v o) B "l ) 27 @2

All the calculations needed for regression quantiles follow the algorithm proposed
by Barrodale and Roberts(1974). In this study, for comparing with SHH, we

include L.S,, L;, K(25) slope estimator, say, Q25 and RHH. We also include two

M-estimators called SBIW and SHT designed for asymmetric error distributions
which are proposed by Hogg, et al(1988). We briefly mention these estimators as
follows ;

Define MAD = median | r;- median(r;)|, i=1,2 ,n, whereri=y;— Bo— Bi1xi,
Bo and B; are the K(.275) estimates.
If 2;=06745r; /MAD, they use the weight for SBIW as

w;=[1-(2+0.6)%)?
and SHT as
w;=[1+5(z+0.5)?]}

to calculate these M-estimates. Then 2000 samples were simulated at n=20,
n=80 and 4000 samples were simulated at n=40. @ We summarize the results
in Table 1. For sample sizes of 20 and 40, SHH performs best on average
efficiency. However, with n=80, SBIW performs best based on average
efficiency and average rank. In this comparison, we found out that least

squares estimator and L; perform extremely bad with very right skewed
distributions, like %%(1) and x%(2). For example, for n=80, the efficiency of

LS is just 14% and 12.2% with underlying distributions, x?(1) and x%(2),
respectively. Finally, all estimators are far better than least squares in this
overall study. This holds true even for the smaller sample sizes of 20. Least
squares is clearly the best estimator when the underlying distribution is close
to the normal, but as the distribution gets a little skewed, our estimates SHH
or others desigred for asymmetric error distributions do a much better job.
This is particularly true for larger sample sizes, like n=80.
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Table 1
MSE’s and Relative Efficiencies of Estimators
Skewed Right Distributions

n (D) (@ @ xX8)  Ave.Eff.

20 2115 3961 7748 15347
54 276  59.2 88.7 45.2

LS 40  18% 3922 8403 15962
23 158  42.4 76.7 34.3

80 2034 3002  80B4 15886

1.4 122 415 74.7

20 1163 3904 9638 22705
99 280  47.6 60.0 36.4

L1 40 1034 3819 10514 22746
43 158 339 53.8 27.0

80 98 3080 10045 23474
28 120 334 50.5 24.7

20 222 1585 5886 17344
51.8 69,1 77.9 78.5 69.3

Q25 40 150 133 5545 16708
293 4.6 643 73.2 53.1

80 127 1269 5583 16831
22.0 375 60.1 70.5 47.5

20 115 1110 4998 17200
10 986 9.7 79,2 92.4

SBIW 40 44 621 3819 15160
100 100  93.4 80,7 93.5

80 28 476 338 13988
100 100 100 84.8 96.2

20 1l 1095 4668 14989
81,6 100 98,2 90, 8 92.7

SHT 40 86 693 3961 14335
66.7 896  90.0 85,3 82.9

80 13 505 3665  141il
65.1 943 9.6 84.1 83.8

20 414 1912 6930 14419
278 57,3 662 94,4 61.4

RHH 40 20 1192 5399 12261
2.0 521 6.0 99.7 59.7

80 166 1042 4240 12307
16.9  46.7  79.2 96.4 59.1

20 14110z 4585 136l
92,7  99.4 100 98.0

SHH 40 53 g5 366 12099
83,0 934 100 100 94.1

80 3 560 3393 11864
824 850 989 100 91.6

In each cell, the first value is 103(MSE of the estimator), the standard error of
which is usually 2 to 4 percent of that value. The second value is the percent
efficiency relative to the estimator having the lowest estimated MSE for that
distribution.
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