• Title/Summary/Keyword: L(+)-lactate

Search Result 415, Processing Time 0.023 seconds

Effect of Bioluminescence Stimulating Agent of the Genetically Engineered Strain KG1206 on the Monitoring of the Petroleum Hydrocarbon Contaminated Groundwater Samples (발광유전자 재조합 균주 활성 촉진 조건이 석유계 탄화수소 오염지하수 모니터링에 미치는 영향)

  • Ko, Kyung-Seok;Kong, In-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.1
    • /
    • pp.79-84
    • /
    • 2008
  • This paper describes the application of bioluminescence stimulating agents on a genetically engineered microorganism, Pseudomonas putida mt-2 KG1206, to monitor toluene analogs using in groundwater samples from petroleum hydrocarbon contaminated sites. The maximum bioluminescent response with pure chemicals followed in the order: m-methyl benzyl alchohol > m-toluate > toluene > m-xylene > benzoate > p-xylene > o-xylene. Generally, the bioluminescence production of strain mixed with groundwater samples was dependent on the contaminated total inducer concentrations. However, few samples showed opposite results, where these phenomena may be caused by the complexicity of environmental samples. Two chemicals, SL(sodium lactate) and KNO$_3$, were tested to determine a better bioluminescence stimulant. Both chemicals stimulate the bioluminescence activity of strain KG1206, however, a slightly high bioluminescence was observed with nitrogen chemical. This selected stimulant was then tested on samples collected from contaminated groundwater samples. The bioluminescence activity of all samples mixed with the strain was stimulated with KNO$_3$ amendment. This suggests that the low bioluminescence activity exhibited by the environmental groundwater samples can be stimulated by amending the culture with a proper agent, such as nitrogen compound. These findings would be useful, especially, when strain was used to monitor the groundwater samples contaminated with low inducer contaminants. Overall, the results of this study found the ability of bioluminescence producing bacteria to biosensor a specific group of environmental contaminants, and suggest the potential for more efficient preliminary application of this engineered strain in a field-ready bioassay.

Protective Effect of Glycoprotein Isolated from Cudrania tricuspidata on Liver in $CCl_4$-treated A/J Mice (생쥐에 있어서 꾸지뽕 당단백질의 간보호 효과)

  • Joo, Heon-Yeong;Lim, Kye-Taek
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.93-99
    • /
    • 2009
  • This study aimed to determine whether or not glycoprotein isolated from Cudrania tricuspidata Bureau fruit(CTB glycoprotein) exerts a hepatoprotective effect on liver injury induced by the administration of carbon tetrachloride($CCl_4$, 1.0mL/kg) to A/J mice. Following the administration of CTB glycoprotein(0-20mg/kg), the activities of antioxidant enzymes (superoxide dismutase(SOD), catalase(CAT), and glutathione peroxidase(GPx)), and the quantities of measured thiobarbituric acid reactive substances(TBARS), lactate dehydrogenase(LDH), and nitric oxide(NO) were evaluated from the murine liver tissues and plasma. Additionally, the activity of nuclear factor-kappa B(NF-${\kappa}B$) was assessed after pretreatment with $CCl_4$. When the mice were treated with $CCl_4$ alone, the activities of antioxidative enzymes reduced but amounts of TBARS, LDH, and NO increased. However, the results of treatment with CTB glycoprotein(10 and 20 mg/kg) revealed significantly increased activities of antioxidant enzymes(SOD, CAT, and GPx), as compared with $CCl_4$ alone. On the other hand, the result showed significant diminutions of the quantities of TBARS, LDH, and NO after treatment with CTB glycoprotein(10 and 20 mg/kg), as compared to $CCl_4$ alone. The activity of NF-${\kappa}B$ also declined after pretreatment with CTB glycoprotein, as compared with $CCl_4$ treatment alone. Thus, it is suggested that the CTB glycoprotein exerts a protective effect against $CCl_4$-induced liver injury in A/J mice.

Application of lactic acid bacteria producing antifungal substance and carboxylesterase on whole crop rice silage with different dry matter

  • Lee, Seong Shin;Paradhipta, Dimas Hand Vidya;Lee, Hyuk Jun;Joo, Young Ho;Noh, Hyeon Tak;Choi, Jeong Seok;Ji, Keum Bae;Kim, Sam Churl
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.1029-1037
    • /
    • 2021
  • Objective: This study was conducted to investigate effects of antifungal substance and carboxylesterase-producing inoculant on fermentation indices and rumen degradation kinetics of whole crop rice (WCR) silage ensiled at different dry matter (DM) contents. Methods: Dual-purpose inoculants, Lactobacillus brevis 5M2 and Lactobacillus buchneri 6M1, confirmed both activities of antifungal and carboxylesterase in the previous study. The WCR at mature stage was chopped, and then wilted to obtain three different DM contents consisting of 35.4%, 43.6%, and 51.5%. All WCR forages were applied distilled water (CON) or mixed inoculants with 1:1 ratio at 1×105 colony forming unit/g (INO), and ensiled into 20 L mini silo (5 kg) in quadruplicates for 108 d. Results: The INO silages had lower lactate (p<0.001) and butyrate (p = 0.022) with higher acetate (p<0.001) and propionate (p<0.001) than those of CON silages. Ammonia-N (p<0.001), lactate (tendency; p = 0.068), acetate (p = 0.030), and butyrate (p<0.001) concentrations of INO silages decreased linearly with increasing DM content of WCR forage. The INO silages presented higher lactic acid bacteria (p<0.001) with lower molds (p<0.001) than those of CON silages. Yeasts (p = 0.042) and molds (p = 0.046) of WCR silages decreased linearly with increasing DM content of WCR forage. In the rumen, INO silages had higher the total degradable fraction (p<0.001), total volatile fatty acid (tendency; p = 0.097), and acetate (p = 0.007), but lower the fractional degradation rate (p = 0.011) and propionate (p<0.001) than those of CON silage. The total degradable fraction (p<0.001), total volatile fatty acid (p = 0.001), iso-butyrate (p = 0.036), and valerate (p = 0.008) decreased linearly with increasing DM content of WCR forage, while the lag phase (p<0.001) was increased linearly. Conclusion: This study concluded that application of dual-purpose inoculants on WCR silage confirmed antifungal and carboxylesterase activities by inhibiting mold and improving rumen digestibility, while increase of wilting times decreased organic acids production and rumen digestibility.

Effects of method and duration of restraint on stress hormones and meat quality in broiler chickens with different body weights

  • Ismail, Siti Nadirah;Awad, Elmutaz Atta;Zulkifli, Idrus;Goh, Yong Meng;Sazili, Awis Qurni
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.865-873
    • /
    • 2019
  • Objective: The study was designed to investigate the effects of restraint method, restraint duration, and body weight on stress-linked hormones (corticosterone, adrenaline, and noradrenaline), blood biochemical (namely glucose and lactate), and the meat quality in broiler chickens. Methods: A total of 120 male broiler chickens (Cobb 500) were assigned to a $2{\times}3{\times}2$ factorial arrangement in a completely randomized design using two restraint methods (shackle and cone), three durations of restraint (10, 30, and 60 s), and two categories of live body weight ($1.8{\pm}0.1kg$ as lightweight and $2.8{\pm}0.1kg$ as heavyweight). Results: Irrespective of the duration of restraint and body weight, the coned chickens were found to have lower plasma corticosterone (p<0.01), lactate (p<0.001), lower meat drip loss (p<0.01), cooking loss (p<0.05), and higher blood loss (p<0.05) compared with their shackled counterparts. The duration of restraint had significant effects on the meat initial pH (p<0.05), ultimate pH (p<0.05), and yellowness (p<0.01). The lightweight broilers exhibited higher (p<0.001) blood loss and lower (p<0.05) cooking loss compared to the heavyweight broilers, regardless of the restraint method used and the duration of restraint. However, the interaction between the restraint method, duration of restraint, and body weight contributed to differences in pre-slaughter stress and meat quality. Therefore, the interaction between the restraint method and the duration of restraint affected the meat shear force, lightness ($L^*$) and redness ($a^*$). Conclusion: The duration of restraint and body weight undoubtedly affect stress responses and meat quality of broiler chickens. Regardless of the duration of restraint and body weight, the cone restraint resulted in notably lower stress, lower meat water loss, and higher blood loss compared to shackling. Overall, the findings of this study showed that restraint method, duration of restraint, and body weight may affect the stress response and meat quality parameters in broilers and should be considered independently or interactively in future studies.

Chemical components and hepato-protective effect of Lentinula edodes fermented by lactic acid bacteria (표고 유산균 발효물의 성분 및 간기능 보호 효과)

  • Im, Seung-Bin;Kim, Kyung-Je;Jin, Seong-Woo;Koh, Young-Woo;Ha, Neul-I;Jeong, Hee-Gyeong;Lee, Jae-Keun;Yun, Kyeong-Won;Seo, Kyoung-Sun
    • Journal of Mushroom
    • /
    • v.19 no.3
    • /
    • pp.191-199
    • /
    • 2021
  • This study was conducted to improve the useful components and biological activity of Lentinula edodes fermented by lactic acid bacteria (LAB). Three LAB strains (Lactobacillus brevis KCCM 11904, L. plantarum KCCM 354469, and L. fermentum KCCM 12116) were inoculated and used for L. edodes hot water extract (10%, 20%, 30%) fermentation. LAB fermentation of L. edodes hot water extracts decreased pH and thus were more acidic than non-fermented L. edodes hot water extract. β-glucan and ergothioneine contents were increased by L. edodes in a concentration-dependent manner. The ergothioneine and β-glucan contents were highest in fermented with 30% L. edodes hot water extract fermented by L. plantarum and L. brevis (40.48 mg/100 g and 13.94%, respectively). The hepato-protective effect of fermented L. edodes hot water extracts by the three LAB were tested using Sprague-Dawley rat primary hepatocytes. In primary hepatocytes obtained following liver injury induced by acetaminophen, fermented L. edodes hot water extracts by the three LAB showed protective effects, as evident by reduction of the aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase liver markers. The collective results indicate that the fermented L. edodes hot water extracts obtained using LAB are potentially valuable in preventing or treating liver disease.

Effects of Pueraria radix in Water Extract on the Detoxification in Rat administered with Cadmium (카드뮴을 급여한 흰쥐에서 갈근 열수 추출액의 해독작용효과)

  • Chung, Yung-Hee;Shin, Mee-Kyung;Han, Sung-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.17 no.4
    • /
    • pp.456-464
    • /
    • 2002
  • This study was designed to investigates the effects of Korean pueraris radix water extract in Cd(cadmium) administered rats. Forty male Sprague-Dawley rats weighing $100{\pm}10g$ were used for this experiment and divided into following 4 groups; control group, 3% pueraria radix in water extract group, 50 ppm Cd group, 50ppm Cd group with 3% pueraria radix in water extract group. The Cd administered rats were given 50 ppm of $CdCl_2\;{\cdot}\;2H_2O$ disolved in the distilled water. The Cd content in the rats tissue of Cd administered group was lower than in the rats tissue of Cd group with 3% pueraria radix in water extract group. Plasma levels of renin activity was increased by Cd administration group, compared with 3% pueraria radix in water extract group and Cd administred group. Glutamate oxaloacetate transaminase(GOT) and Glutamate pyruvate transaminase(GPT) were increased in Cd-administered group and lower in the 3% extracts of pueraria radix in water extract group. Lactate dehydrogenase(LDHase) was lower in the 3% extracts of pueraria radix-Cd group than in the Cd group. This results suggested that pueraria radix in water extract group, has a lowering effects on the accumulation of Cd and it is belived that the pueraria radix in water extract group has some protective effects to Cd administered in rats, but the mechanism of these effects was obscure.

Immunostimulation of C6 Glioma Cells Induces Nitric Oxide-Dependent Cell Death in Serum-Free, Glucose-Deprived Condition

  • Shin, Chan-Young;Choi, Ji-Woong;Ryu, Jae-Ryun;Ryu, Jong-Hoon;Kim, Won-Ki;Kim, Hyong-Chun;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.8 no.2
    • /
    • pp.140-146
    • /
    • 2000
  • Recently, we reported that immunostimulation of primary rat cortical astrocyte caused stimulation of glucose deprivation induced apoptotic cell death. To enhance the understanding of the mechanism of the potentiated cell death of clucose-deprived astrocyte by immunostimulation, we investigated the effect of immunostimulation on the glucose deprivation induced cell death of rat C6 glioma cells. Co-treatment of C6 glioma cells with lipopolysaccharide (LPS, $1\;{\mu}\textrm{g}/ml$) and interferon ${\gamma}(IFN{\gamma},\;100U/ml)$ is serum free condition caused marked elevationo f nitric oxide production ($>50\;{\mu}M$). In this condition, glucose deprivation caused significant release of lactate dehdrogenase (LDH) from C6 glioma cells while control cells did not show LDH release. To investigate whether elevated level of nitric oxide is responsible for the enhanced LDH release in glucose-deprived condition, C6 glioma cells were treated with 3-morphorinosydnonimine (SIN-1) and it was observed that SIN-1 caused increase in LDH release from glucose-deprived C6 glioma cells. Treatment of C6 glioma cells with $25\;{\mu}M$ of pyrrolidinedithiocarbamate (PDTC) which inhibit Nuclear factor kB (NF-kB) activation, caused complete inhibition of nitric oxide production. Treatment of C6 glioma cells with NO synthase inhibitors, $N^{G}$-nitro-L-arginine (NNA) or L-$N{\omega}$-nitro-L-arginine methyl ester (L-NAME), caused inhibition of nitric oxide production and also glucose deprivation induced cell death of cytokine-stimulated C6 glioma cells. In addition, diaminohydroxypyrimidine (DAHP, 5 mM) which inhibits the synthesis of tetrahydrobiopterine (BH4), one of essential cofactors for iNOS activity, caused complete inhibition of NO production from immunostimulated C6 glioma cells. The results from the present study suggest that immunostimulation causes potentiation of glucose deprivation induced death of C6 glioma cells which is mediated at least in part by the increased production of nitric oxide. The vulnerability of immunostimulated C6 glioma cells to hypoglycemic insults may implicate that the elevated level of cytokines in various ischemic and neurodegenerative diseases may play a role in their pathogenesis.

  • PDF

Protective Effect of 3,5-Dicaffeoylquinic Acid Isolated from Ligularia fischeri against Oxidative Damage in HepG2 Cells (HepG2 세포에서 산화적 손상에 대한 곰취 유래 3,5-Dicaffeoylquinic Acid의 보호 효과)

  • Park, Sun-Young;Kim, Gur-Yoo;Jhoo, Jin-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.11
    • /
    • pp.1286-1292
    • /
    • 2017
  • This study was conducted to investigate the hepatoprotective effects of 3,5-dicaffeoylquinic acid (3,5-DCQA) isolated from Ligularia fischeri against hydrogen peroxide-induced oxidative stress in HepG2 cells. Antioxidative effects of 3,5-DCQA were determined by measuring antioxidant enzyme [superoxide dismutase (SOD), catalase (CAT) glutathione peroxidase (GPx)] expression levels against hydrogen peroxide-induced oxidative stress using real-time PCR analysis. 3,5-DCQA treatment significantly increased gene expression levels of SOD, CAT, and GPx in a dose-dependent manner ($10{\sim}30{\mu}g/mL$) in HepG2 cells. Hepatoprotective effects were analyzed by measuring glutamic oxaloacetic transaminase (GOT), lactate dehydrogenase (LDH), and gamma-glutamyl transferase (GGT) activities using a biochemistry analyzer in hydrogen peroxide-treated HepG2 cells. 3,5-DCQA treatment significantly reduced GOT, LDH, and GGT activities in a dose-dependent manner ($10{\sim}30{\mu}g/mL$) against increased liver function index enzyme activities induced by hydrogen peroxide oxidative stress in HepG2 cells. The results reveal that 3,5-DCQA compound isolated from Ligularia fischeri can be useful for the development of an effective hepatoprotective agent.

Degradation of Tetrachloroethylene (PCE) by a Dechlorinating Enrichment Culture Fixed in an Anaerobic Reactor (탈염소화 미생물 부착 혐기성 고정막 반응기에 의한 테트라클로로에틸렌(PCE)의 분해)

  • Lee Tae Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.49-55
    • /
    • 2004
  • A soil enrichment LYF-1 culture from a contaminated site, which could reductively dechlorinate 900 $\mu$M (ca. 150 mg/L) of tetrachloroethylene (PCE) stoichimetrically into cis-1,2-dichloroethylene (cis-DCE), was established and characterized. The enrichment culture can use yeast extract, peptone, formate, acetate, lactate, pyruvate, citrate, succinate, glucose, sucrose, and ethanol as electron donors for dechlorination of PCE. Addition of NO$_2$$^{[-10]}$ and NO$_3$$^{[-10]}$ as alternative electron acceptors showed complete inhibition of PCE dechlorination, but S$_2$O$_3$$^{-2}$ , SO$_3$$^{-2}$ and SO$_4$$^{-2}$ had no significant effect on PCE dechlorination. The enrichment culture was attached to ceramic media in an anaerobic fixed-bed reactor. The fixed-bed reactor showed more than 99% of PCE degradation in the range of PCE loading rate of 0.13-0.78 $\mu$moles/L/hr. The major end product of PCE dechlorination was cis-DCE.

Intramuscular Administration of Zinc Metallothionein to Preslaughter Stressed Pigs Improves Anti-oxidative Status and Pork Quality

  • Li, L.L.;Hou, Z.P.;Yin, Y.L.;Liu, Y.H.;Hou, D.X.;Zhang, B.;Wu, G.Y.;Kim, S.W.;Fan, M.Z.;Yang, C.B.;Kong, X.F.;Tang, Z.R.;Peng, H.Z.;Deng, D.;Deng, Z.Y.;Xie, M.Y.;Xiong, H.;Kang, P.;Wang, S.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.761-767
    • /
    • 2007
  • This study was conducted to determine the effects of exogenous zinc-metallothionein (Zn-MT) on anti-oxidative function and pork quality. After feeding a corn-soybean meal-based diet for two weeks, 48 pigs ($Duroc{\times}Landrace{\times}Chinese\;Black Pig$) were assigned randomly to four groups. Pigs in Group 1 were maintained under non-stress conditions, whereas pigs in Groups 2, 3 and 4 were aggressively handled for 25 min to produce stress. Pigs in Groups 1, 2, 3, and 4 received intramuscular administration of saline (control group; CON), 0 (negative control group; NCON), 0.8 (low dose group; LOW), and 1.6 (high dose group; HIGH) mg rabbit liver Zn-MT per kg body weight, respectively. Pigs were slaughtered at 3 and 6 h post-injection. Zn-MT treatment increased (p<0.05) the activities of superoxide dismutase (SOD) and glutathione-peroxidase (GSH-PX) while decreasing the concentration of malondialdehyde (MDA) in liver. These responses were greater (p<0.05) at 6 h than at 3 h post Zn-MT injection. Zn-MT treatment increased (p<0.05) hepatic SOD mRNA levels in a time and dose-dependent manner and decreased (p<0.05) serum glutamate-pyruvate transaminase and lactate dehydrogenase activities (indicators of tissue integrity). Zn-MT administration decreased (p<0.05) lactate concentration and increased (p<0.05) pH and water-holding capacity in the longissimus thorasis meat. Collectively, our results indicate that intramuscular administration of Zn-MT to pre-slaughter stressed pigs improved tissue anti-oxidative ability and meat quality.