Effects of Pueraria radix in Water Extract on the Detoxification in Rat administered with Cadmium

카드뮴을 급여한 흰쥐에서 갈근 열수 추출액의 해독작용효과

  • Chung, Yung-Hee (Dept. of Food of Nutrition, Gwangju Health College) ;
  • Shin, Mee-Kyung (Dept. of Food of Nutrition, College of Human Environmental Science, Wonkwang University) ;
  • Han, Sung-Hee (Dept. of Food Science Wonkwang Health Science College)
  • 정영희 (광주보건대학 식품영양과) ;
  • 신미경 (원광대학교 생활과학대학 식품영양학과) ;
  • 한성희 (원광보건대학 식품과학과)
  • Published : 2002.10.31

Abstract

This study was designed to investigates the effects of Korean pueraris radix water extract in Cd(cadmium) administered rats. Forty male Sprague-Dawley rats weighing $100{\pm}10g$ were used for this experiment and divided into following 4 groups; control group, 3% pueraria radix in water extract group, 50 ppm Cd group, 50ppm Cd group with 3% pueraria radix in water extract group. The Cd administered rats were given 50 ppm of $CdCl_2\;{\cdot}\;2H_2O$ disolved in the distilled water. The Cd content in the rats tissue of Cd administered group was lower than in the rats tissue of Cd group with 3% pueraria radix in water extract group. Plasma levels of renin activity was increased by Cd administration group, compared with 3% pueraria radix in water extract group and Cd administred group. Glutamate oxaloacetate transaminase(GOT) and Glutamate pyruvate transaminase(GPT) were increased in Cd-administered group and lower in the 3% extracts of pueraria radix in water extract group. Lactate dehydrogenase(LDHase) was lower in the 3% extracts of pueraria radix-Cd group than in the Cd group. This results suggested that pueraria radix in water extract group, has a lowering effects on the accumulation of Cd and it is belived that the pueraria radix in water extract group has some protective effects to Cd administered in rats, but the mechanism of these effects was obscure.

3% 갈근 열수 추출액 급여와 카드뮴을 흰쥐에게 4주 동안 급여 한 후 간과 신장 조직의 카드뮴 함량, renin 호르몬 농도, 혈청중의 GPT, GOT 및 LDHase의 함량을 조사하였다. 식이섭취량에서 대조군인 24.62 g에 비하여, 3% 갈근 열수 추출액 급여군은 23.41 g으로, 카드뮴 급여군은 23.76 g에 비하여, 갈근 열수 추출액급여군과 카드뮴 병합 급여군은 22.25 g으로 감소하였으나 유의한 차이는 없었다. 체중 증가량은 대조군이 124.50 g이고, 3% 갈근 열수 추출액급여군은 127.22 g으로 대조군에 비하여 감소하였다. 카드뮴 급여군은 107.57 g에 비하여, 갈근 열수 추출액급여군과 음용수와 카드뮴 병합 급여군은 128.80 g으로 유의적으로 증가하였다. 식이효율은 카드뮴 급여군과 갈근- 카드뮴 병합 급여군 간에는 유의성이 인정되었다. 간의 무게에서 대조근에 비하여 갈근 열수 추출액 급여군이 약간 감소하였으나 유의한 차이는 없었으며 카드뮴 공급군에 비하여 갈근-카드뮴 병합 급여군이 유의적으로 증가하였다. 신장 무게는 카드뮴 공급군에 비하여 갈근 카드뮴 병합 급여군이 유의적으로 증가하였다. 간 조직내에서의 카드뮴 함량은 대조군이 0.15 ug/g으로 갈근 열수 추출액급여군은 0.14 ug/g에 비하여 별다른 차이를 보이지 않았다. 카드뮴 급여군은 3.04 ug/g에 비하여 갈근-카드뮴 음용수 병합 급여군은 2.87 ug/g 유의적으로 감소하였다. 신장 조직내에서 대조군은 0.21 ug/g이었으나, 갈근 열수 추출액급여군 은 0.23 ug/g으로 별다른 차이는 없었다. 카드뮴 급여군은 6.48 ug/g에 비하여 갈근 열수 추출액급여군과 카드뮴 병합 급여군은 4.42 ug/g 4.57ug/g으로 유의적으로 감소하였다. 혈장호르몬인 renin 농도는 갈근차 음용수군은 16.73 ngAl/mL/hr으로 대조군인 15.89 ngAl/mL/hr에 비해서 증가하였다. 카드뮴 급여군은 25.72 ngAl/mL/hr으로 카드뮴과 갈근 열수 추출액 병합 급여군인 18.57ngAl/mL/hr에 비하여 유의성 있게 증가하였다. GOT는 대조군이 96.16 U/L에 비하여 갈근차 단독 급여군은 96.44 U/L로 약간 증가하였다. 카드뮴 급여군은 154.40 U/L인데 비하여 카드뮴과 갈근 열수 추출액 병합 급여군이 118.80 U/L으로 유의적으로 감소하였다. GPT는 대조군이 59.60 U/L에 비하여, 갈근 열수 추출액 급여군은 63.46 U/L으로 약간 증가하였으나 유의한 차이는 없었다. 카드뮴 급여군은 73.54 U/L 인데 비하여 갈근 열수 추출액 급여군과 카드뮴 병합 급여군은 69.80 U/L으로 유의적으로 감소하였다. LDHase는 대조군이 179.00, 갈근 열수 추출액급여군은 198.60 U/L으로 대조군에 비하여 감소하였으나 유의한 차이는 나지 않았다. 카드뮴 급여군은 264.30 U/L 인데 비하여 갈근 열수 추출액급여군와 카드뮴 동시 병합 급여군은 227.30 U/L으로 유의적으로 감소하였다. 카드뮴에 중독된 흰쥐에 대한 갈근 추출물의 해독 효과를 알아 보는 본 연구에서 50 ppm의 카드뮴액과 함께 3% 갈근 추출액을 급여한 흰쥐의 체중증가량과 사료 섭취 효율을 50 ppm의 카드뮴만을 급여한 흰쥐의 이들 측정값과 비교할 때 유의적인 차이가 없었다. 그러나 50 ppm의 카드뮴액과 함께 3% 갈근 추출액을 급여한 흰쥐군은 50 ppm의 카드뮴액만을 급여한 흰쥐군과 비교하여 신장내 카드뮴 함량과 GPT 및 LDH 활성도, renin 활성도가 유의적으로 감소되었고 신장 무게는 정상 흰쥐와 같은 수준으로 회복하였고 GOT 활성도 역시 정상 흰쥐와 같은 수준으로 감소를 보여 갈근이 카드뮴 중독 흰쥐에서 신장 등의 장기내 카드뮴 축적의 감소로 카드뮴 중독 작용의 경감 효과를 갖는 것으로 나타났다.

Keywords

References

  1. Shaikh ZA, Lucis OJ. Cadium and zinc binding in mammalian liver and kidneys. Arch. Environ. Health 24:419, 1992
  2. Kazantzis G. Renal tubular dysfunction and abnormalities of calcium metabolism in cadmium workers,. Environ. Health Perspect 28:155-159, 1979 https://doi.org/10.2307/3428918
  3. Morita S. Defence mechanisms against cadmium toxicity. I. A biochemical and histological study of the effects of pretreatment with cadmium on the acute toxicity of cadmium in mice. Japan J Pharmacol 35:129-135, 1984 https://doi.org/10.1254/jjp.35.129
  4. Hamilton DL, Smith MW. Inhibition of intestinal Ca uptake by Cd and the effects of a low Ca diet on Cd retention. Enciron. Research 25:175-181, 1978
  5. Bernard AL, Foulkes EC. Cadmium Springer-Verlag. Berlin Heidelberg Germany, 75-97, 1986
  6. Page AL, Chang AC. Cadmium springer-verlag, Berin Heidelberg Germany 33-55, 1986
  7. Morita S. Defense mechanisms against cadmium toxicity. Ⅲ Effect of pretreatment with a amall oral dose of cadmium on metallothionein systhesis after a large oral dose of cadmium in mice. Japan J Pharmacol 35: 153-161, 1984 https://doi.org/10.1254/jjp.35.153
  8. Murakami M, Cain K, Webb M. Cd-metallothionein induced nephropathy; a morphlogical and autoradiographical study of Cd distribution, the development of tubular damage and subsequent cell regeneration. J Appl Toxicol 51:237-242, 1983
  9. Kostial K, Simonoric I. Lead absorption from the intestine in newborn rats. Nature 233; 564, 1971
  10. Revis NW, Osborne TR. Dietary protein effects on Cd and metallothionein accmulation in the liver and kidney of rats. Environ Health Persp 54:83, 1984 https://doi.org/10.2307/3429794
  11. Revis NW. The relationship of dietary protein to metallothionein and Cd induced renal damage. Toxicology 20:323, 1980
  12. Kotsonis FN. Klassen CD. The relationship of metallothionein administration of rats. Toxicol Appl Pharmacol 46:39, 1978 https://doi.org/10.1016/0041-008X(78)90135-7
  13. Cherian MG, Nordberg, M. Cellular adaptation in metal toxicology and metallothionein. Toxicology 28:1, 1983 https://doi.org/10.1016/0300-483X(83)90101-4
  14. Axelsson B, Piscator M. Renal damage after prolonged exposure to cadmium. An experimental study. Arch Environ Health, 12:360-373, 1966 https://doi.org/10.1080/00039896.1966.10664382
  15. Morita S. Defense mechanisms against cadmium toxicity. Ⅲ Effect of pretreatment with a small oral dose of cadmium on metallothione synthesis after a large oral dose of cadmium in mice. Japan J Physiol, 214:469-474, 1984
  16. Kim MJ, Rhee SJ. Effect of green tea, olong rea and black tea beverage on the removal of cadmium in rat. J Korean Soc Fod Nutr 23(5): 784-791, 1994
  17. Muramatsu K, Fukuyo M, Hara Y. Effects of green tea catechins on plasma cholesterol on the removal of cadmium in rat. J Nutr Sci, Vitaminol 32(6): 613-622, 1986 https://doi.org/10.3177/jnsv.32.613
  18. Sakanaks S, Kim M, Taniguchi M, Yamamoto T. Antibacterial substances in japanese green tea extract against streptotococcus mutans. a Cariognic bacterium. Argic Biol Chem 53(9):2307-2311, 1989
  19. Cheng SJ. The preliminary study of inhibitory effects of green tea antioxidant on the mutation. Acta of Experimental Biology 9; 328-334, 1986
  20. Cheng SJ. The preliminary study of inhibitory effects of green tea antioxidant on mutation Acta of Experimental Biology 9;28-334, 1986
  21. Hayashi E, Hayashi M, YamazoeH Pharmacological action of tea extract on the central nervous system in mice. Oyo Yakuri 40(3): 351-356, 1990
  22. Kada, T, Kaneko K, Matsuzaki S, Mastuzaki T, Hara Y. Detection and chemical identification on natural bioantiutagens. Mutation Reseach. 150; 127-131, 1985 https://doi.org/10.1016/0027-5107(85)90109-5
  23. Mutsuzaki T, Hata Y. Antioxidative activity of tea leaf catechins. Nippon Nogeikagaku Kaish, 59; 129-134, 1985 https://doi.org/10.1271/nogeikagaku1924.59.129
  24. Kazuko N, Midori Y, Chikusa T, Michiko I, Mitsuo N. Platelet aggregation inhibitory activity tea extracts Nippon Shokuhin kogyo
  25. Lee SJ. Bonchokangmok. Komunsa Seoul 18:110-116, 1990
  26. Huh J. Donguibokam. Nmasandang Seoul 3, 1984
  27. Miura K, Takeda R, Nakamoto H, Saito H. The chemical and pharmacological study of Puerariae radix. J Appl Pharmacol 5:247, 1971
  28. Zeng CY, Zeng GY, Zhou YP, Zhangm LY, Cheng Y. Pharmacological studies on radix purariae. Clin Med J 95:145, 1982
  29. Fan LL, Zeng GY, Zhou YP, Zhang LY, Cheng Y. Pharmacological studies on radix purariae. Clin Med J, 95:145, 1982
  30. Keung WM, Vallee BB. Daidzin, a potent, selectiveinhibitor from prurariae radix. Alchhol Clin Exp Res 17: 1254, 1993 https://doi.org/10.1111/j.1530-0277.1993.tb05238.x
  31. Xie C.I, Lin RC, Antony V, Lumeng L, Li TK, Zao ZH, Wang, GF. Daidzin apotent selective inhibitor of human mitochondrial aldehyde dehyfrogenase. Proc Natl Acad Sci. USA 90:1247-1250, 1993 https://doi.org/10.1073/pnas.90.4.1247
  32. Zeng GY, Zhang LY, Zhou YP, Fan LL Phannacoligical studied on radix. Clin Med J 95:145-150, 1982
  33. Oh MJ, Lee KS, Son HY, Kim SY. Antoxidative components of Pueria root. Korean J Food Sci Technol 22(7): 793-800, 1990
  34. Han SH, Kim JB, Min SG, Lee CH. The effects of Puerariae radix catechins administration on liver function in carbon tetrachloride-treated rats. J Korean Soc. Food Nutr 24(6): 713-720, 1995
  35. Ganje JJ, Page AL. Rapid acid dissoulation of plant tissue for cadium determination by atomic absorption spectrophotometry. At Absorpt Newsl 131:108-110, 1976
  36. Cho KW, Kim SH, Koch GY. Radioimmunoassay and characterization of renin-angiotensin system in the fresh water turtle. L Exp Zool 242:255-262, 1987 https://doi.org/10.1002/jez.1402420303
  37. Goodfriend TL, L Levine, Fasma GD. Antibodies to bradykinin and angiotensin. A use of carbodiimide in immunololgy. Sci 144:1344-1346 (1964)
  38. Cho KW, Malvin RL, Renin inactivation during in vitro. Experimental Am J Physiol, 236:501-504, 1979
  39. Sealey JE, Laragh JH. Searching out low renin patients limitation of some commonly used methods. Am J Med, 55:303-314, 1973 https://doi.org/10.1016/0002-9343(73)90132-0
  40. Cho KW, Kim SH, Koh GY, Seul KH, Huh KS, Chu D, Rapp NS, Moon HB, Kim KK, Kook YJ. Plasma concentration of atrial natriuretic peptide in different phase of korean hemmorrhagic fever. Nephron 51: 215-219, 1989 https://doi.org/10.1159/000185288
  41. Cho KW, Kim SH. Factors affecting the relationship between renal renin activity and plasma rerun activity. Kor J Physiol 16:63-69, 1982
  42. Reitman S, Frankel S. A Colorimethc Method for the Determination of Serum Glutamic Oxalacetic and Glutamic Pyruvic Transammases. Amer J Clin Pathol 28:56-60, 1957 https://doi.org/10.1093/ajcp/28.1.56
  43. Ginsberg AL. Very High Levels of SGOT and LDH in Patients with Extrahe-patic Billiary Tract Obstruction. J Amer Dig Dis 15:803-805, 1970 https://doi.org/10.1007/BF02236040
  44. Bardwill C, Chang C. Serum lactic dehydrogenase, leucine amino peptidase and 5-nucleotidase activities, observations in patients with carcinoma of the pancreas and metatobiliary disease. J Canad Med Ass 89:755-800, 1963
  45. Wr blewski F, LaDue JS. Lactic dehydrogenase activity in blood. Proc Soc Exper Biol. Med, 90:210-215, 1955 https://doi.org/10.3181/00379727-90-21985
  46. Amador E,, Dorfman E, Wacker WE. Serum lactic dehydrogenase activity an analytical assessment of current assays. Clin Chem, 9:391-399, 1963
  47. SAS : SAS User's Guide. Statistics, 5th ed., SAS Institute Inc., Cary,NC,U.S.A 1987
  48. Choi JH. Effects of green tea catechin on cadimium accmulation in chronic cadmium poisoned rats. The Konan Nutrition Society 34:384-392. 2001
  49. Juhlshamn K, Utne F, Bracckan OR. Interactions of cadmium with copper, zinc and iron m different organs and tissues of the rat. Acta Pharmacol Toxicol 41: 515-524, 1977 https://doi.org/10.1111/j.1600-0773.1977.tb02163.x
  50. Kim HJ, Bae KH, Lee HJ, Eun JB, Kim MK. Effect of Hesperidin extracted from tangerine peel on Cd and lipid metabolism, and antioxidative capacity in rats. Korean J Nutrition 32:137-149, 1999
  51. Smith DR, Fiegal AR. 1992. Stable isotropic tracers of lead mobilizes by DMZA Chelation in low lead-exposrd rats. Toxicol. Appl. Pharmacol, vol 116, p 85-90 https://doi.org/10.1016/0041-008X(92)90148-L
  52. Cantilena LR. Klassen, CD. 1982. Decreased effectiveness of chelation theraphy with after acute cadmium poisoning. Toxicol. Appl. Pharmacol. vol 63, p173-180 https://doi.org/10.1016/0041-008X(82)90038-2
  53. Kapor SC, Wieloposki L, Grazizno JH, Lolacono, N. 1989. Influence of 2,3,-dimercap tosuccinic acid on gastrointestinal lead absorption and whole body lead retention, Toxicol, Appl. Pharmacol, vol 97, p 525-530 https://doi.org/10.1016/0041-008X(89)90257-3
  54. Babggy SP, Mcdonald WJ: Increased plasma renin activity in mature spontaneousely hypertensive rats. Proc Soc Exp Biol Med 139:1213-1216, 1972 https://doi.org/10.3181/00379727-139-36331
  55. Rhee SJ, Hung PC. Metallothionein accumulation in CHO, Cd cells in response to lead treatment. Chem Biol Interactions 72:347-361, 1989 https://doi.org/10.1016/0009-2797(89)90009-4
  56. Bergmeyer HU. Methods of enzymatic analysis. Verlag Chemie, Academic press Weinheim 1:20-28. 1995
  57. Rhee SJ Kim SO, Choe WK, Cho SH. Effect of cadmium dose injection on peroxidative damage in rat liver. J Korean Soc. Food Nutr 21:601-607, 1992
  58. Yoon YH Rhee SJ. Effects of korean Green tea, Oolong tea and Black tea beverage on the antioxidative detoxification in rat poisoned with Cadmium J Korean Soc. Food Nutr 27:1007-1017, 1994