• 제목/요약/키워드: L$\'{e}$vy processes

검색결과 13건 처리시간 0.018초

L$\acute{e}$vy과정 하에서 추세와 도약이 있는 경우 옵션가격결정모형 : Gerber-Shiu 모형을 중심으로 (Option Pricing Models with Drift and Jumps under L$\acute{e}$vy processes : Beyond the Gerber-Shiu Model)

  • 조승모;이필상
    • 재무관리연구
    • /
    • 제24권4호
    • /
    • pp.1-43
    • /
    • 2007
  • 전통적인 옵션가격결정모형인 블랙-숄즈 모형(Black-Scholes model)은 기초자산의 로그수익률(log-return)이 브라운운동(Brownian motion)을 따른다는 가정에 기반을 두고 있다. 그러나 이 가정은 현실적인 한계가 많은 것으로 비판을 받아 왔다. 이에 따라 지난 20여 년간 브라운 운동 이외에 새로운 확률과정을 도입한 모형들이 연구되고 도출되었다. 최근에는 레비과정(L$\acute{e}$vy process)에 기반한 모형들이 활발히 연구되어오고 있는데, 그 기원은 1994년 거버(Gerber)와 쉬우(Shiu)에 의한 거버-쉬우 모형(Gerber-Shiu model)이다. 2004년 치앙(Cheang)은, 거버-쉬우 모형이 하나의 레비과정을 가정한 데 비해, 복수의 독립적인 레비과정을 가정하여 옵션가격결정모형을 유도함으로써 거버-쉬우 모형을 추세(drift)와 도약(jump)을 갖는 경우로 확장할 수 있는 가능성을 제시하였다. 본 논문에서는 치앙의 모형을 이용하여 레비과정 하에서의 추세와 도약을 갖는 거버-쉬우 모형을 유도하였다. 여기에 감마분포를 도입하여 1993년에 도출된 헤스톤 모형(Heston model)에 도약을 도입한 형태의 모형을 유도하였다. 아울러 이렇게 유도된 모형에 대하여 KOSPI200 지수 옵션 자료를 사용해서 블랙-숄즈 모형과의 가격설명력을 비교하였다. 그 결과, 본 논문에서 유도된 모형이 블랙-숄즈 모형 이상의 가격설명력을 보이는 것으로 나타났다.

  • PDF

A NOTE ON THE GENERALIZED HEAT CONTENT FOR LÉVY PROCESSES

  • Cygan, Wojciech;Grzywny, Tomasz
    • 대한수학회보
    • /
    • 제55권5호
    • /
    • pp.1463-1481
    • /
    • 2018
  • Let $X=\{X_t\}_{t{\geq}0}$ be a $L{\acute{e}}vy$ process in ${\mathbb{R}}^d$ and ${\Omega}$ be an open subset of ${\mathbb{R}}^d$ with finite Lebesgue measure. The quantity $H_{\Omega}(t)={\int_{\Omega}}{\mathbb{P}}^x(X_t{\in}{\Omega})$ dx is called the heat content. In this article we consider its generalized version $H^{\mu}_g(t)={\int_{\mathbb{R}^d}}{\mathbb{E}^xg(X_t){\mu}(dx)$, where g is a bounded function and ${\mu}$ a finite Borel measure. We study its asymptotic behaviour at zero for various classes of $L{\acute{e}}vy$ processes.

Computing the Ruin Probability of Lévy Insurance Risk Processes in non-Cramér Models

  • Park, Hyun-Suk
    • Communications for Statistical Applications and Methods
    • /
    • 제17권4호
    • /
    • pp.483-491
    • /
    • 2010
  • This study provides the explicit computation of the ruin probability of a Le¢vy process on finite time horizon in Theorem 1 with the help of a fluctuation identity. This paper also gives the numerical results of the ruin probability in Variance Gamma(VG) and Normal Inverse Gaussian(NIG) models as illustrations. Besides, the paths of VG and NIG processes are simulated using the same parameter values as in Madan et al. (1998).

ON ESTIMATES OF POISSON KERNELS FOR SYMMETRIC LÉVY PROCESSES

  • Kang, Jaehoon;Kim, Panki
    • 대한수학회지
    • /
    • 제50권5호
    • /
    • pp.1009-1031
    • /
    • 2013
  • In this paper, using elementary calculus only, we give a simple proof that Green function estimates imply the sharp two-sided pointwise estimates for Poisson kernels for subordinate Brownian motions. In particular, by combining the recent result of Kim and Mimica [5], our result provides the sharp two-sided estimates for Poisson kernels for a large class of subordinate Brownian motions including geometric stable processes.

Valuation of European and American Option Prices Under the Levy Processes with a Markov Chain Approximation

  • Han, Gyu-Sik
    • Management Science and Financial Engineering
    • /
    • 제19권2호
    • /
    • pp.37-42
    • /
    • 2013
  • This paper suggests a numerical method for valuation of European and American options under the two L$\acute{e}$vy Processes, Normal Inverse Gaussian Model and the Variance Gamma model. The method is based on approximation of underlying asset price using a finite-state, time-homogeneous Markov chain. We examine the effectiveness of the proposed method with simulation results, which are compared with those from the existing numerical method, the lattice-based method.

Continuous Time Approximations to GARCH(1, 1)-Family Models and Their Limiting Properties

  • Lee, O.
    • Communications for Statistical Applications and Methods
    • /
    • 제21권4호
    • /
    • pp.327-334
    • /
    • 2014
  • Various modified GARCH(1, 1) models have been found adequate in many applications. We are interested in their continuous time versions and limiting properties. We first define a stochastic integral that includes useful continuous time versions of modified GARCH(1, 1) processes and give sufficient conditions under which the process is exponentially ergodic and ${\beta}$-mixing. The central limit theorem for the process is also obtained.

OPTIMAL INVESTMENT FOR THE INSURER IN THE LEVY MARKET UNDER THE MEAN-VARIANCE CRITERION

  • Liu, Junfeng
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.863-875
    • /
    • 2010
  • In this paper we apply the martingale approach, which has been widely used in mathematical finance, to investigate the optimal investment problem for an insurer under the criterion of mean-variance. When the risk and security assets are described by the L$\acute{e}$vy processes, the closed form solutions to the maximization problem are obtained. The mean-variance efficient strategies and frontier are also given.

Uniform Ergodicity and Exponential α-Mixing for Continuous Time Stochastic Volatility Model

  • Lee, O.
    • Communications for Statistical Applications and Methods
    • /
    • 제18권2호
    • /
    • pp.229-236
    • /
    • 2011
  • A continuous time stochastic volatility model for financial assets suggested by Barndorff-Nielsen and Shephard (2001) is considered, where the volatility process is modelled as an Ornstein-Uhlenbeck type process driven by a general L$\'{e}$vy process and the price process is then obtained by using an independent Brownian motion as the driving noise. The uniform ergodicity of the volatility process and exponential ${\alpha}$-mixing properties of the log price processes of given continuous time stochastic volatility models are obtained.