• Title/Summary/Keyword: Kumaraswamy distribution

Search Result 6, Processing Time 0.022 seconds

On Distribution of Order Statistics from Kumaraswamy Distribution

  • Garg, Mridula
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.3
    • /
    • pp.411-417
    • /
    • 2008
  • In the present paper we derive the distribution of single order statistics, joint distribution of two order statistics and the distribution of product and quotient of two order statistics when the independent random variables are from continuous Kumaraswamy distribution. In particular the distribution of product and quotient of extreme order statistics and consecutive order statistics have also been obtained. The method used is based on Mellin transform and its inverse.

Statistical Properties of Kumaraswamy Exponentiated Gamma Distribution

  • Diab, L.S.;Muhammed, Hiba Z.
    • International Journal of Reliability and Applications
    • /
    • v.16 no.2
    • /
    • pp.81-98
    • /
    • 2015
  • The Exponentiated Gamma (EG) distribution is one of the important families of distributions in lifetime tests. In this paper, a new generalized version of this distribution which is called kumaraswamy Exponentiated Gamma (KEG) distribution is introduced. A new distribution is more flexible and has some interesting properties. A comprehensive mathematical treatment of the KEG distribution is provided. We derive the $r^{th}$ moment and moment generating function of this distribution. Moreover, we discuss the maximum likelihood estimation of the distribution parameters. Finally, an application to real data sets is illustrated.

The Bivariate Kumaraswamy Weibull regression model: a complete classical and Bayesian analysis

  • Fachini-Gomes, Juliana B.;Ortega, Edwin M.M.;Cordeiro, Gauss M.;Suzuki, Adriano K.
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.5
    • /
    • pp.523-544
    • /
    • 2018
  • Bivariate distributions play a fundamental role in survival and reliability studies. We consider a regression model for bivariate survival times under right-censored based on the bivariate Kumaraswamy Weibull (Cordeiro et al., Journal of the Franklin Institute, 347, 1399-1429, 2010) distribution to model the dependence of bivariate survival data. We describe some structural properties of the marginal distributions. The method of maximum likelihood and a Bayesian procedure are adopted to estimate the model parameters. We use diagnostic measures based on the local influence and Bayesian case influence diagnostics to detect influential observations in the new model. We also show that the estimates in the bivariate Kumaraswamy Weibull regression model are robust to deal with the presence of outliers in the data. In addition, we use some measures of goodness-of-fit to evaluate the bivariate Kumaraswamy Weibull regression model. The methodology is illustrated by means of a real lifetime data set for kidney patients.

THE LOGARITHMIC KUMARASWAMY FAMILY OF DISTRIBUTIONS: PROPERTIES AND APPLICATIONS

  • Ahmad, Zubair
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1335-1352
    • /
    • 2019
  • In this article, a new family of lifetime distributions by adding two additional parameters is introduced. The new family is called, the logarithmic Kumaraswamy family of distributions. For the proposed family, explicit expressions for some mathematical properties are derived. Maximum likelihood estimates of the model parameters are also obtained. This method is applied to develop a new lifetime model, called the logarithmic Kumaraswamy Weibull distribution. The proposed model is very flexible and capable of modeling data with increasing, decreasing, unimodal or modified unimodal shaped hazard rates. To access the behavior of the model parameters, a simulation study has been carried out. Finally, the potentiality of the new method is proved via analyzing two real data sets.

A new generalization of exponentiated Frechet distribution

  • Diab, L.S.;Elbatal, I.
    • International Journal of Reliability and Applications
    • /
    • v.17 no.1
    • /
    • pp.65-84
    • /
    • 2016
  • Motivated by the recent work of Cordeiro and Castro (2011), we study the Kumaraswamy exponentiated Frechet distribution (KEF). We derive some mathematical properties of the (KEF) including moment generating function, moments, quantile function and incomplete moment. We provide explicit expressions for the density function of the order statistics and their moments. In addition, the method of maximum likelihood and least squares and weighted least squares estimators are discuss for estimating the model parameters. A real data set is used to illustrate the importance and flexibility of the new distribution.

Different estimation methods for the unit inverse exponentiated weibull distribution

  • Amal S Hassan;Reem S Alharbi
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.2
    • /
    • pp.191-213
    • /
    • 2023
  • Unit distributions are frequently used in probability theory and statistics to depict meaningful variables having values between zero and one. Using convenient transformation, the unit inverse exponentiated weibull (UIEW) distribution, which is equally useful for modelling data on the unit interval, is proposed in this study. Quantile function, moments, incomplete moments, uncertainty measures, stochastic ordering, and stress-strength reliability are among the statistical properties provided for this distribution. To estimate the parameters associated to the recommended distribution, well-known estimation techniques including maximum likelihood, maximum product of spacings, least squares, weighted least squares, Cramer von Mises, Anderson-Darling, and Bayesian are utilised. Using simulated data, we compare how well the various estimators perform. According to the simulated outputs, the maximum product of spacing estimates has lower values of accuracy measures than alternative estimates in majority of situations. For two real datasets, the proposed model outperforms the beta, Kumaraswamy, unit Gompartz, unit Lomax and complementary unit weibull distributions based on various comparative indicators.