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Abstract: Motivated by the recent work of Cordeiro and Castro (2011), we study the 
Kumaraswamy exponentiated Frechet distribution (KEF). We derive some mathematical 
properties of the (KEF) including moment generating function, moments, quantile function 
and incomplete moment. We provide explicit expressions for the density function of the order 
statistics and their moments. In addition, the method of maximum likelihood and least squares 
and weighted least squares estimators are discuss for estimating the model parameters. A real 
data set is used to illustrate the importance and flexibility of the new distribution. 
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1. INTRODUCTION AND MOTIVATION 
 
The Frechet distribution is the most popular model for analyzing skewed data and 
hydrological processes. One of the important families of distributions in lifetime tests is the 
exponentiated Frechet (EF) distribution. The exponentiated Frechet (EF) distribution has been 
introduced by Nadarajah and Kotz (2003) as a generalization of the standared Frechet 
distribution which has cumulative distribution function (c.d.f.) and a probability density 
function (p.d.f.) of the form, respectively; 
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where 0θ >  is the scale parameter and ,λ α  are shape parameters respectively. The 
corresponding probability density function (pdf) is given by 

( ) ( )
1

(1 )( , , , ) 1 .
λ λθ θ α

λ λα λ θ αλθ
− −

−
− + ⎡ ⎤= −⎢ ⎥⎣ ⎦

x xg x x e e                   (2) 

The Kumaraswamy distribution (Kumaraswamy, 1980) is not very common among 
statisticians and has been little explored in the literature. We refer to the Kum distribution to 
denote the Kumaraswamy distribution. Its cumulative distribution function (cdf) is defined by 

( )( ) 1 1 ,0 1,= − − < <
baF x x x                          (3) 

where 0,a >  and 0b >  are two additional parameters whose role is to introduce asymmetry 
and produce distributions with heavier tails. The Kum distribution does not seem to be very 
familiar to statisticians and has not been investigated systematically in much detail before, nor 
has its relative interchangeability with the beta distribution has been widely appreciated. 
However, in a very recent paper, Jones (2009) explored the background and genesis of the 
Kum distribution and, more importantly, made clear some similarities and differences 
between the beta and Kum distributions. He highlighted several advantages of the Kum 
distribution over the beta distribution: the normalizing constant is very simple; simple explicit 
formulae for the distribution and quantile functions which do not involve any special 
functions; a simple formula for random variate generation; explicit formulae for L-moments 
and simpler formulae for moments of order statistics. Further, according to Jones (2009), the 
beta distribution has the following advantages over the Kum distribution: simpler formulae for 
moments and moment generating function (mgf); a one-parameter sub-family of symmetric 
distributions; simpler moment estimation and more ways of generating the distribution via 
physical processes. 
The probability density function (pdf) of the Kum distribution also has a simple form 

( ) 11( ) 1 ,
−−= −

ba af x abx x                           (4) 

and it can be unimodal, increasing, decreasing or constant, depending in the same way on the 
values of its parameters like the beta distribution. 
If ( )G x  is the baseline cdf of a random variable, the cdf of the Kum-generalized distribution, 
say K G−  distribution, is defined by (Cordeiro and Castro, 2010) 

( ) 1 1 ( ) .⎡ ⎤= − −⎣ ⎦
baF x G x                             (5) 

The density function corresponding to (5) is 
11( ) ( ) ( ) 1 ( ) ,
−− ⎡ ⎤= −⎣ ⎦

ba af x abg x G x G x                      (6) 

where ( ) ( )d
dxg x G x= . The density family in (6) has many of the same properties of the 

class of beta- G  distributions (see Eugene et al. (2002)), but has some advantages in terms of 
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tractability, since it does not involve any special function such as the beta function. So, the 
new K G−  distribution is obtained by adding two parameters a  and b  to the quantile 
function of the G  distribution. This generalization contains distributions with unimodal and 
bathtub shaped hazard rate functions. It also contemplates a broad class of models with 
monotone risk functions. Some mathematical properties of the K G−  distribution derived by 
Cordeiro and Castro (2010) are usually much simpler than those properties of the beta G  
distribution (Eugene et al., 2002). 
In this note, we combine the works of Kumaraswamy (1980) and Cordeiro and de Castro 
(2011) to derive some mathematical properties of a new model, called the Kumaraswamy 
exponentiated Frechet ( )KEF  distribution. Equivalently, as occurs with the beta- G family 
of distributions. The special K G−  distributions can be generated as follows: the K -normal 
distribution is obtained by taking ( )G x  in (4) to be the normal cumulative function. 
Analogously, the K -Weibull (Cordeiro et al.(2010)), General results for the Kumaraswamy-
G  distribution (Nadarajah et al.(2011)). K -generalized gamma (Pascoa et al.(2011)), K
-Birnbaum-Saunders (Saulo et al. (2011)) Beta-Linear Failure Rate Distribution and its 
Applications (see Jafari et al.(2012)) and K - Gumbel (Cordeiro et al. (2011)) distributions 
are obtained by taking ( )G x  to be the cdf of the Weibull, generalized gamma, 
Birnbaum-Saunders and Gumbel distributions, respectively, among several others. Hence, 
each new K G−  distribution can be generated from a specified G  distribution. 
A physical interpretation of the K G−  distribution given by (5) and (6) (for a  and b  
positive integers) is as follows. Suppose a system is made of b  independent components and 
that each component is made up of a  independent subcomponents. Suppose the system fails 
if any of the b  components fails and that each component fails if all of the a  
subcomponents fail. Let 1 2   , ,...,j j jaX X X denote the life times of the subcomponents with 

in the jth  component, 1,...,=j b  with common (cdf) G . Let jX  denote the lifetime of the 

thj  component, 1,...,=j b  and let X  denote the lifetime of the entire system. Then the 
(cdf) of X  is given by 
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So, it follows that the K G−  distribution given by (3) and (4) is precisely the time to failure 
distribution of the entire system. The rest of the article is organized as follows. In Section 2, 
we define the cumulative function, probability density function and hazard functions of the 



 
  
  
 

A new generalization of exponentiated Frechet distribution 68

KEF  distribution and some special cases. Quantile function, median, moment generating 
function and moments are discussed in Section 3. Section 4 included the order statistics. The 
least squares and weighted least squares estimators are introduced in Section 5. Maximum 
likelihood estimation is performed and the observed information matrix is determined in 
Section 6. Section 7 gives applications involving a real data set. The probability density 
function in Equation (6) does not involve any complicated function. If X is a random 
variable with pdf in (6), we write  ~ ( , , , , )X KEF a b α θ λ  . 
 
 

2. KUMARASWAMY EXPONENTIATED FRECHET DISTRIBUTION 
 
Let ( , , , , , )G x a b α θ λ  is the exponentiated Frechet cumulative distribution with parameters 

, , ,α θa b  and λ , then the Equation (5) yields the Kumaraswamy exponentiated Frechet
( )KEF  cumulative distribution 

{ }
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 The corresponding probability density function is given by 
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      (8) 

In Figures 1 and 2, we plot the KEF pdf and cdf for selected parameter values respectively. 
 

 

Figure 1. Plots of the KEF density for selected parameter values 
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Figure 2. Plots of the KEF cdf for selected parameter values 
 
The associated hazard (failure) rate (HR) and reversed hazard rate (RHR) function are given 
respectively by, 
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and 
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In Figures 3, we plot the KEF hazared rate for selected parameter values.   
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Figure 3. Plots of the KEF hazard rate for selected parameter values 
 

Note that the Kumaraswamy exponentiated Frechet distribution is very flexible model that 
approaches to different distributions when its parameters are changed. In addition to some 
standard distribution the KEF distribution includes the following well-known distributions as 
special models. 
1) If 1a b= = , the exponentiated Frechet distribution is obtained. 
2) When 1,a b α= = =  we get Frechet distribution. 
3) When 1,α =  we get Kumaraswamy Frechet distribution. 
4) If 1,λ α= =  we get kumaraswamy inverse exponential distribution. 
5) If 1,λ =  we get kumaraswamy exponentiated inverse exponential distribution. 
 
2.1 Expansion for the pdf and cdf of distribution 
 
In this subsection, we present two formulae for the cdf of the KEF  distribution depending if 
the parameter 0>b  is real non-integer or integer. First, if 1z <  and 0>b  is real non- 
integer, we have 

1

0
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Using the expansion (2.5) in (2.1), the cdf of the KEF  distribution when 0>b  is real 
non-integer follows 
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when b 0  is integer, using the expansion (11) in (7) , we get  
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also using the power series of Equation (11) the pdf Equation (8) becomes 
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again, by using Equation (11) in the last factor of each summand in (13) we obtain 
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again, by using Equation (11) in the last factor of each summand in (14) we obtain   
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1 ( 1) 1 ( 1) 1

, ,
0 0 0

( 1) .
b a i ji j k

i j k
i j ki j k

C
α∞ ∞ ∞ − + − + −+ +

= = =

⎛ ⎞⎛ ⎞⎛ ⎞
= − ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
∑∑∑  

 
 

3. TATISTICAL PROPERTIES 
 
This section is devoted to studying statistical properties of the ( )KEF distribution, 
specifically quantile function, moments, moment generating function and incomplete moment. 
 
3.1 Quantile function and simulation 
 
The quantile function corresponding to Eq. is ( ) ( )q qF x P X x= ≤  where 1

( )( ) ( ),q KEFx F u−=  

is given by the following relation 
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Simulating the KEF random variable is straightforward. Let U be a uniform variate on the unit 
interval (0, 1). Thus, by means of the inverse transformation method, we consider the random 
variable X  given by the relation 
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3.2 Moments 
In this subsection we discuss the thr  moment for KEF  distribution. Moments are 
necessary and important in any statistical analysis, especially in applications. It can be used to 
study the most important features and characteristics of a distribution (e.g., tendency, 
dispersion, skewness and kurtosis). 
 
Theorem 1. 
If X  has KEF ( , )xΦ , ( , , , , )a b α θ λΦ =  then the thr  moment of X  is given by the 
following 
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Proof: 
Let X  be a random variable with density function (14). The thr  ordinary moment of the 
( )KEF  distribution is given by 
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let ( 1)( )xk tλθ+ =  then 
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which completes the proof . 
 
The central moments rμ  and cumulants rk  of the KEF  distribution can be determined 
from expression (18) as 
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Additionally, the skewness and kurtosis can be calculated from the third and forth standarized 

cumulants in the forms SK= 3
3
2

K

K
and KU= 4

2
2
,K

K
 respectively. 

 
Theorem 2. If X  has KEF  distribution, then the moment generating function ( )XM t  
has the following form 
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Proof. 
 
We start with the well known definition of the moment generating function given by  
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integrable for all t  close to 0, then we can we rewrite the moment generating function as 

!
0

( ) ( )r rt
X r

r

M t E X
∞

=

= ∑ by replacing ( ).rE X  Hence using Equation (18) the MGF of KEF 

distribution is given by 

( 1)

( 1)

, , 1
0

( 1) ( )( ) .
! ( ( 1)) ( ( 1))

r k r k

r kr kr

X i j k
r

tM t C
r j j

γ γ
θ θ

γγ
θ θα βγ

α θ α
+ + +

+ ++∞

+
=

⎡ ⎤Γ + Γ
= +⎢ ⎥

+ +⎢ ⎥⎣ ⎦
∑  

This completes the proof. 
Similarly, the characteristic function of the KEF distribution becomes ( ) ( )x Xt M itφ =  where 
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1i = − is the unite imaginary number. 
 
Theorem 3. If X  has KEF  distribution, then the conditional moments for KEF
distribution is given by 
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Let ( 1)( ) ,xk uλθ+ =  the above integral can be written as 
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Where 1( , ) s x

t
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∞ − −Γ = ∫ is the upper incomplete gamma function. The mean residual 

lifetime function is given by 
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The importance of the MRL function is due to its uniquely determination of the lifetime 
distribution as well as the failure rate (FR) function. Lifetime can exhibit IMRL (increasing 
MRL) or DMRL (decreasing MRL). MRL function that first decreases (increases) and then 
increases (decreases) are usually called bathtub (upside-down as bathtub) shaped, BMRL 
(UMRL). Many authors such as Mi (1995), Park (1985) and Tang et al (1999) have been 
studied the relationship between the behaviors of the MRL and FR functions of a distribution. 
 
 

4. DISTRIBUTION OF THE ORDER STATISTICS 

In this Section, we derive closed form expressions for the pdfs of the thr  order statistic of the 
KEF  distribution, also, the measures of skewness and kurtosis of the distribution of the  

thr  order statistic in a sample of size n  for different choices of ;n r  are presented in this 
Section. Let 1 2, ,..., nX X X  be a simple random sample from KEF  distribution with pdf 
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and cdf given by Equation (8) and Equation (12), respectively. 
Let 1 2, ,..., nX X X  denote the order statistics obtained from this sample. We now give the 
probability density function of :r nX , say 

: ( , )r nf x Φ  and the moments of :r nX
, 1,2,...,r = . Therefore, the measures of skewness and kurtosis of the distribution of the 

:r nX  

are presented. The probability density function of 
:r nX  is given by 
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where ( , )F x Φ  and ( , )f x Φ  are the cdf and pdf of the KEF  distribution given by (7), (8), 
respectively, and since 0 ( , ) 1F x< Φ < , for 0x > , by using the binomial series expansion of 
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we have 
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Φ = − Φ Φ⎜ ⎟

⎝ ⎠
∑
n r

r jj
r n

j

n r
f x F x f x

j                (25) 
substituting from Equation (7) and (8) into Equation (25), we can express the thk  ordinary 

moment of the thr  order statistics 
:r nX  say 

:( )k
r nE X  as a liner combination of the thk  

moments of the KEF  distribution with different shape parameters. Therefore, the measures 
of skewness and kurtosis of the distribution of 

:r nX  can be calculated. 

 
 

5. LEAST SQUARES AND WEIGHTED LEAST SQUARES ESTIMATORS 
 
In this Section we provide the regression based method estimators of the unknown parameters 
of the Kumaraswamy exponentiated Lomax, which was originally suggested by Swain, 
Venkatraman and Wilson (1988) to estimate the parameters of beta distributions. It can be 
used some other cases also. Suppose 1,..., nY Y  is a random sample of size n  from a 
distribution function ( )⋅G  and suppose ( )iY ; 1,2,...,i n=  denotes the ordered sample. The 

proposed method uses the distribution of ( )( )iG Y . For a sample of size n , we have 

( ) ( )( ) ( ) 2

( 1)( ) , ( )
1 ( 1) ( 2)

− +
= =

+ + +j j
j j n jE G Y V G Y

n n n  
and 
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( )( ) ( ) 2

( 1)( ), ( ) ;for ,
( 1) ( 2)

− +
= <

+ +j k
j n kCov G Y G Y j k

n n
 

see Johnson, Kotz and Balakrishnan (1995). Using the expectations and the variances, two 
variants of the least squares methods can be used. 
 
Method 1. (Least Squares Estimators) Obtain the estimators by minimizing 

2

( )1
( ,

1=

⎛ ⎞−⎜ ⎟+⎝ ⎠
∑n

jj

jG Y
n

                         (26) 

with respect to the unknown parameters. Therefore in case of KEF  distribution the least 
squares estimators of , , , , .a b andα θ λ say ,LSEa , , ,LSE LSE LSEb α θ  and LSEλ   respectively, 
can be obtained by minimizing 

( )

2

1
1 1 1 1

1
x

ba
n

j

je
n

λθ α
−

=

⎡ ⎤⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎢ ⎥− − − − −⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥+⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦⎢ ⎥⎣ ⎦
∑  

with respect to , , , , . .a b andα θ λ   
 
Method 2. (Weighted Least Squares Estimators) The weighted least squares estimators can 
be obtained by minimizing 

2

( )1
( ,

1=

⎛ ⎞−⎜ ⎟+⎝ ⎠
∑ n

j jj

jw G Y
n

                        (27) 

with respect to the unknown parameters, where 

( )
2

( )

1 ( 1) ( 2) .
( 1)( )j

j

n nw
j n jV G Y
+ +

= =
− +

 

Therefore, in case of KEF distribution the weighted least squares estimators of  
, , , , .a b andα θ λ  say ,WLSEa  , , ,WLSE WLSE WLSEb α θ  and WLSEλ respectively, can be 

obtained by minimizing 

( )

2

1
1 1 1 1

1
x

ba
n

jj

jw e
n

λθ α
−

=

⎡ ⎤⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎢ ⎥− − − − −⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥+⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦⎢ ⎥⎣ ⎦
∑  

with respect to the unknown parameters only. 
 
 

6. ESTIMATION AND INFERENCE 
 
In this Section, we determine the maximum likelihood estimates (MLEs) of the parameters of 
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the KEF  distribution from complete samples only. Let 1 2, ,..., nX X X  be a random 
sample of size n  from ( , , , )λ θKTF a b . The likelihood function for the vector of parameters 

( , , , , )α θ λΦ = a b  can be written as 

( ) ( )1

( ) 1 ( )

1( ) ( )(1 )
1 1

11
( ) ( )

1 1

( , ) ( , )
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1 1 1 1 1

λθ λθ

λ λθ θ

α
λ λ

α α

αλθ =

=
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= =
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− −

= =

Φ = Π Φ
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xii x

x x
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i i i
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i i
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e e

    (28) 

Taking the log-likelihood function for the vector of parameters ( , , , , )α θ λΦ = a b  we get 

1
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    (29) 

The log-likelihood can be maximized either directly or by solving the nonlinear likelihood 
equations obtained by differentiating (29). The components of the score vector are given by 
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and 
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We can find the estimates of the unknown parameters by maximum likelihood method by 
setting these above non-linear equations (30)- (34) to zero and solve them simultaneously. 
Therefore, we have to use mathematical package to get the MLE of the unknown parameters. 
Also, all the second order derivatives exist. Thus we have the inverse dispersion matrix is 
given by 

, .

θ θ λ

α θ λ

α α αα αθ αλ

θ θ θα θθ θλ

λ λ λα λθ λλ

αα
θθ
λλ

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟∼ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦

aa ab a a a

ba bb b b b

a b

a b

a b

V V V V Va a
V V V V Vb b

N V V V V V

V V V V V

V V V V V

               (35) 

1

aa ab a a a

ba bb b b b

a b

a b

a b

V V V V V
V V V V V

V E V V V V V
V V V V V
V V V V V

θ θ λ

α θ λ

α α αα αθ αλ

θ θ θα θθ θλ

λ λ λα λθ λλ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

where  
2 2 2 2 2 2
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By solving this inverse dispersion matrix these solutions will yield asymptotic variance and co 
variances of these ML estimators for ,a  b ,α , θ  and λ . Using equation (35), we 
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approximate 100(1 )%γ−  confidence intervals for a , b , ,α θ  and λ  are determined 
respectively as, 

2 2 2 2 2
 , ,  ,  ,and ,aa bba z V b z V z V z V z Vγ γ γ γ γαα θθ λλα θ λ± ± ± ± ±  

where zγ  is the upper 100 theγ  percentile of the standard normal distribution. 

The following table represents the mean square error (MSEs) of the MLEs. 
 

Table 1. Mean square errors of the MLEs 
( , , , , ) ( ) ( ) ( ) ( ) ( )

15 0.1610 0.706 0.0345 0.1489 0.3194
25 0.1609 0.6626 0.0268 0.1338 0.3089
35 0.1603 0.6504 0.0266 0.1065 0.3082

(1.15,1,1.25,0.75,0.65) 45 0.159 0.6380 0.0251 0.0927 0.3068

KEF a b n MSE a MSE b MSE MSE MSE

KEF

α θ λ α θ λ

55 0.1509 0.6145 0.0214 0.0865 0.3012
65 0.1467 0.603 0.0210 0.0765 0.2937
75 0.1266 0.5921 0.0191 0.0652 0.2900

15 0.2473 0.0686 0.1767 0.8281 0.2108
25 0.2414 0.046 0.1687 0.5062 0.2073
35 0.2091 0.0400 0.1590 0.4233 0.2003

(2.15, 2KEF , 2.25,1.5,0.95) 45 0.1560 0.0390 0.1567 0.302 0.1931
55 0.1551 0.0371 0.1459 0.016 0.1814
65 0.1050 0.0384 0.1454 0.010 0.1556
75 0.086 0.0281 0.1438 0.080 0.1128

15 0.702 0.229 0.0063 0.6003 0.1984
25 0.341 0.1967 0.0059 0.5924 0.1929
35 0.248 0.0974 0.0057 0.5869 0.1808

(3.25,3.5,1.75,1,1) 45 0.088 0.0635 0.0044 0.5814 0.1713
55 0.004 0.047 0.0035 0.5481 0.1693
65 0.0029 0.029 0.0032 0.5319 0.1618
75 0.0016 0.0145 0.001 0.50 0.157

KEF

 

 
We noticed from the above Table 1 that all MSEs decrease as the sample size increases, while 
they increase with increasing of the true parameter. 
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7. APPLICATION TO REAL DATA SET 
 
In this Section we fit KEF to two real data sets and compare the fitness with Kumaraswamy 
Frechet distribution(KFD), kumaraswamy exponentiated inverse exponential distribution 
(KEIED), exponentiated Frechet distribution (EFD) distributions, kumaraswamy inverse 
exponential distribution(KIED) and Frechet distribution (FD). Specifically, we consider two 
data sets.  
 

Table 2. Maximum-likelihood estimates, AIC, BIC and AICC values, and Kolmogorov- 
Smirnov statistics for the models based on data set 1 

Model estimators K-S -2logL AIC BIC AICC 

KEFD 

ˆ 2.1a =  
ˆ 2.22b =  
ˆ 1.46α =  
ˆ 1.28θ =  
ˆ 0.94λ =  

0.289 58.323 68.323 79.414 78.414 

KFD 

ˆ 3.43a =  
ˆ 2.5b =  
ˆ 1.9θ =  

ˆ 0.54λ =  

0.15 183.296 193.296 204.679 203.387 

KEIED 

ˆ 3.936a =  
ˆ 3.824b =  
ˆ 0.68α =  
ˆ 1.1θ =  

0.122 162.211 172.211 183.94 182.302 

EFD 
ˆ 0.66α =  
ˆ 0.85θ =  
ˆ 0.68λ =  

0.296 186.677 196.677 208.06 206.768 

KIED 
ˆ 1.86a =  
ˆ 1.71b =  
ˆ 0.86θ =  

0.156 114.076 124.076 135.46 134.167 

FD 
ˆ 0.57θ =  
ˆ 0.73λ =  

0.324 204.312 214.312 225.695 224.403 
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Data set 1. The following data represent the survival times (in  days) of 72 guinea pigs 
infected with virulent tubercle bacilli, observed and reported by Bjerkedal (1960). The data 
are as follows:                                       
0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07,  07, .08, 
1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 
1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 
2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 
4.32, 4.58, 5.55.                                                                                 
 
 

Table 3. Maximum-likelihood estimates, AIC, BIC and AICC values, and Kolmogorov- 
Smirnov statistics for the models based on data set 2. 

Model estimators K-S -2logL AIC BIC AICC 

KEFD 

ˆ 2.0a =  
ˆ 0.53b =  
ˆ 1.0α =  
ˆ 1.18θ =  
ˆ 0.85λ =  

0.322 14.0 24.0 34.635 34.107 

KFD 

ˆ 1.2a =  
ˆ 1.93b =  
ˆ 0.87θ =  
ˆ 0.60λ =  

0.409 102.175 112.175 122.811 122.282 

KEIED 

ˆ 2.04a =  
ˆ 1.2b =  

ˆ 0.65α =  
ˆ 1.1θ =  

0.122 162.211 172.211 183.94 182.302 

EFD 
ˆ 0.60α =  
ˆ 0.90θ =  
ˆ 0.66λ =  

0. 534 163.619 173.619 184.254 183.726 

KIED 
ˆ 1.0a =  
ˆ 2.1b =  

ˆ 0.47θ =  

0. 512 216.45 226.45 237.085 236.557 

FD 
ˆ 0.52θ =  
ˆ 0.9λ =  

0. 457 227.709 237.709 248.345 247.816 
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Data set 2. The data set is obtained from Smith and Naylor (1987). The data are the strengths 
of 1.5 cm glass fibres, measured at the National Physical Laboratory, England. Unfortunately, 
the units of measurement are not given in the paper. The data set is                             
0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2, 0.74, 1.04, 1.27, 1.39, 
1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.5, 1.54, 1.6, 1.62, 
1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.7, 1.77, 1.84, 
1.24, 1.3, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.7, 1.78, 1.89. 
 
In order to compare distributions, we consider the K_S (Kolmogorov-Smirnov) statistic,  
-2logL, AIC (Akaike Information Criterion), AICC (Akaike Information Criterion Corrected), 
BIC (Bayesian Information Criterion). The best distribution corresponds to lower -2logL, AIC, 
BIC, AICC statistics value. 
Table 2 and Table 3 show parameter MLEs, the values of K_S, -2logL, AIC, BIC, AICC 
statistics for the three data set consecutively. From the above results, it is evident that the KEF 
distribution is the best distribution for fitting these data sets compared to other distributions 
considered here. And is a strong competitor to other distributions commonly used in literature 
for fitting lifetime data. 
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