References
- Cordeiro, G. M. and Castro, M. (2011). A new family of generalized distributions, Journal of Statistical Computation and Simulation, 883-898.
- Cordeiro, G. M., Ortega, E. M. and Nadarajah, S. (2010). The Kumaraswamy Weibull distribution with application to failure data, Journal of the Franklin Institute, 347,1399-1429. https://doi.org/10.1016/j.jfranklin.2010.06.010
- Cordeiro, G. M., Nadarajah, S. and Ortega, E. M. M. (2011). The Kumaraswamy Gumbel distribution, Statistical Methods and Applications, to appear.
- Eugene, N., Lee, C. and Famoye, F. (2002). Beta-normal distribution and its applications, Communication in Statistics-Theory and Methods, 31, 497-512. https://doi.org/10.1081/STA-120003130
- Ghanizadeh, A, Pazira, H. and Lot. R. (2011). Classical estimations of the exponentiated Gamma distribution parameters with presence of K outliers, Australian.
- Ghitany, M. E., Atich, B. and Nadarajah, S. (2008). Lindley distribution and its application, Mathematics and Computers in Simulation, 78, 493-506. https://doi.org/10.1016/j.matcom.2007.06.007
- Jafari, A. and Mahmoudi, E. (2012). Beta-Linear failure rate distribution and its applications, arXiv preprint.
- Jones, M. C. (2009). A beta-type distribution with some tractability advantages, Statistical Methodology, 6, 70-81. https://doi.org/10.1016/j.stamet.2008.04.001
- Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate Distribution, 2nd edition, New York,Wiley.
- Khan R. and Kumar, D. (2011). Lower generalized order statistics from exponentiated gamma distribution and its characterization. Prob Stat Forum, 4, 25-38.
- Kumaraswamy, P. (1980). Generalized probability density-function for double-bounded random-processes, Journal of Hydrology, 462, 79-88.
- Lee, E. T. and Wang, J. (2003). Statistical Methods for Survival Data Analysis, Wiley, New York,
- Nadarajah, S., Coreiro, G. M., and Edwin, M. M. (2012). General results for the Kumaraswamy-G distribution, Journal of Statistical Computation and Simulation, 82.
- Navid, F. and Muhammad, A. (2012). Bayesian analysis of exponentiated gamma distribution under type II censored samples, International Journal of Advanced Science and Technology, 49, 37-46.
- Parviz, N., Rasoul, L. and Hossein, V. (2013). Classical and Bayesian estimation of parameters on the generalized exponentiated gamma distribution. Scientific Research and Essays, 8, 309-314.
- Pascoa, A. R. M. E., Ortega, M. M. and Cordeiro, G. M. (2011). The Kumaraswamy generalized gamma distribution with application in survival analysis, Statistical Methodology, 8, 411-433. https://doi.org/10.1016/j.stamet.2011.04.001
- Sanjay, k., Umesh S. and Dinesh, K. (2011). Bayesian estimation of the exponentiated gamma parameter and reliability function under asymptotics symmeteric loss function, Revesta Statistical Journal, 9, 247-260.
- Saulo, H. J. Lesao, J. and Bourguignon, M. (2011). The kumaraswamy birnbaum-saunders distribution, Journal of Statistical Theory and Practice, 6, 745-759.
- Shawky, A. I. and Bakoban, R. A. (2008). Bayesian and non-Bayesian estimations on the exponentiated gamma distribution, Applied Mathematical Sciences, 2, 2521-2530.
- Shawky, A. I. and Bakoban, R. A. (2009). Order statistics from exponentiated gamma distribution and associated inference, Int. J. Contemp. Math. Sciences, 4, 71-91.
- Singh, S., Singh, U. and Kumar, D. (2011). Bayesian estimation of the exponentiated gamma parameter and reliability function under asymmetric loss function, Revesta Statistical Journal, 9, 247-260.
- Venkatraman, S., Swain, J. J. and Wilson J. R. (1988). Least-squares estimation of distribution functions in johnson's translation system, Journal of Statistical Computation and Simulation, 29, 271-297. https://doi.org/10.1080/00949658808811068