• Title/Summary/Keyword: Korean winter temperature

Search Result 1,903, Processing Time 0.034 seconds

Seasonal Variations of Nitrifying Bacteria in Agricultural Reservoir (농업용 저수지에서의 질화세균의 계절적인 변화)

  • Lee, Hee-Soon;Lee, Young-Ok
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.3 s.99
    • /
    • pp.152-159
    • /
    • 2002
  • The seasonal variations of nitrifying bacterial population sampled from 3 sites in Moon-Chon reservoir were analyzed by in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotide probes from August 2000 until July 2001. In addition, physico-chemical parameters such as temperature, pH, chi-a and DOC were measured to determine correlations between those factors and the size of nitrifying bacterial populations. Total bacterial numbers varied in the range of $0.8{\sim}1.5{\times}10^6\;cells/ml$ independent of sites and had the maximal values in March at all 3 stations. The ratio of eubacteria to total bacteria ranged from 44.9% to 79.5%, and the ratio of each nitrifying bacteria to eubacterial numbers reached only $1.0{\sim}7.4%$. The variations of ammonia-oxidizing bacteria ranged from $1.1{\times}10^4$ to $3.0{\times}10^4\;cells/ml$ without noticeable peak values whereas those of nitrite-oxidizing bacteria varied in $1.3{\sim}5.7{\times}10^4\;cells/ml$ with the increasing tendency in winter regardless of the sites. Moreover it was observed that the numbers of nitrite-oxidizing bacteria were higher than those of ammonia-oxidizing bacteria. Total bacterial numbers correlated with water temperature (r = 0.355, p<0.05) and DOC (r = 0.58G, p<0.01) positively whereas nitrite-oxidizing bacteria correlated with temperature (r = -0.416, p<0.05) and pH (r = -0.568, p = 0.001) negatively. In addition, DOC represented good correlations with eubacterial numbers (r = 0.448, p<0.01). These results indicate that temperature, DOC and pH might be one of the main factors affecting variations of bacterial populations in the aquatic ecosystem. It was also suggested that FISH method is a useful tool for detection of slow growing nitrifying bacteria.

Growth Inhibitory Factors of Italian Ryegrass (Lolium multiflorum Lam.) after Broadcasting under Growing Rice from 2014 to 2015 (2014 / 2015년 이탈리안 라이그라스 (Lolium multiflorum Lam.)의 벼 입모 중 파종 재배시 생육저해 요인 분석)

  • Kim, Young-Jin;Choi, Ki-Choon;Lee, Sang-Hak;Jung, Jeong-Sung;Park, Hyung-Soo;Kim, Ki-Yong;Ji, Hee-Chung;Lee, Sang-Hoon;Choi, Gi-Jun;Kim, Won-Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • The growth of Italian ryegrass (IRG) after wintering was very low in 2015 when IRG was broadcasted under growing rice in fall of 2014. To determine growth inhibitory factors of IRG, we examined the growth conditions of IRG in Nonsan region and meteorological conditions in Daejeon nearby Nonsan. Minimum temperature and maximum instantaneous wind speed on Feb. $8^{th}$ and $9^{th}$ of 2015 after wintering of IRG were $8.8^{\circ}C$, 10.7 m/s and $12.4^{\circ}C$, 9.6m/s, respectively. Air temperature was suddenly dropped due to strong wind with snow showers, which had unfavorable effect on root growth of IRG exposed at the soil surface. The minimum temperature and maximum instantaneous wind speed on Feb. $12^{th}$, $13^{th}$, and $14^{th}$ of 2015 were $4.1^{\circ}C$, 11.6 m/s, $-5.6^{\circ}C$, 10.3 m/s, and $-4.7^{\circ}C$, 7.5 m/s, respectively. The growth circumstance of IRG was not good because soil was dried due to drought continued from January. The minimum temperature and maximum instantaneous wind speed on Feb. $26^{th}$, $27^{th}$, and $28^{th}$ of 2015 were $1.8^{\circ}C$, 13.7 m/s, $-3.5^{\circ}C$, 10.6 m/s, and $4.1^{\circ}C$, 6.8 m/s, respectively. The number of wilting of IRG was more than 59% until Mar. $3^{rd}$ of 2015. IRG faced irreparable environment (low minimum temperatures and extreme instantaneous wind speeds) for 9 days from Mar. $4^{th}$ to Mar. $12^{th}$ of 2015. The main reason for the decrease of IRG productivity was collection delay of rice straw after rice harvest because there was continuous rain between Oct. and Nov. of 2014. For this reason, weakly grown IRG under rice straw was withered after wintering. IRG was withered by frost heaving, drought, and instantaneous wind speed in the spring. Furthermore, the root of IRG was damaged while growing in excess moisture in the surface of paddy soil during the winter season due to rain.

Habitat Climate Characteristics of Lauraceae Evergreen Broad-leaved Trees and Distribution Change according to Climate Change (녹나무과 상록활엽수 자생지 기후특성과 기후변화에 따른 분포 변화)

  • Yu, Seung-Bong;Kim, Byung-Do;Shin, Hyun-Tak;Kim, Sang-Jun
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.6
    • /
    • pp.503-514
    • /
    • 2020
  • Climate change leads to changes in phenological response and movement of plant habitats. Korea's evergreen broad-leaved forest has widened its distribution area compared for the past 20 years, and the range of its native habitats is moving northward. We analyzed climate indices such as the warmth index, the cold index, the lowest temperature in the coldest month, and the annual average temperature, which are closely related to vegetation distribution, to predict the change in the native habitat of Lauraceae evergreen broad-leaved trees. We also analyzed the change and spatial distribution to identify the habitat climate characteristics of 8 species of Lauraceae evergreen broad-leaved trees distributed in the warm temperate zone in Korea. Moreover, we predicted the natural habitat change in the 21st century according to the climate change scenario (RCP 4.5/8.5), applying the MaxEnt species distribution model. The monthly average climate index of the 8 species of Lauraceae evergreen broad-leaved trees was 116.9±10.8℃ for the temperate index, the cold index 3.9±3.8℃, 1495.7±455.4mm for the annual precipitation, 11.7±3.5 for the humidity index, 14.4±1.1℃ for the annual average temperature, and 1.0±2.1℃ for the lowest temperature of winter. Based on the climate change scenario RCP 4.5, the distribution of the Lauraceae evergreen broad-leaved trees was analyzed to expand to islands of Jeollanam-do and Gyeongsangnam-do, adjacent areas of the west and south coasts, and Goseong, Gangwon-do on the east coast. In the case of the distribution based on the climate change scenario RCP 8.5, it was analyzed that the distribution would expand to all of Jeollanam-do and Gyeongsangnam-do, and most regions except for some parts of Jeollabuk-do, Chungcheongnam-do, Gyeongsangbuk-do, and the capital region. For the conservation of Lauraceae evergreen broad-leaved trees to prepare for climate change, it is necessary to establish standards for conservation plans such as in-situ and ex-situ conservation and analyze various physical and chemical characteristics of native habitats. Moreover, it is necessary to preemptively detect changes such as distribution, migration, and decline of Lauraceae evergreen broad-leaved trees following climate change based on phenological response data based on climate indicators and establish conservation management plans.

Effects of Sowing and Harvesting Times on Feed Value and Functional Component of Triticale (x Triticosecale Wittmack) (트리티케일 파종시기 및 수확시기가 사일리지 사료가치와 기능성 성분에 미치는 영향)

  • Jisuk Kim;Kyungyoon Ra;Yul-Ho Kim;Myoung Ryoul Park
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.319-325
    • /
    • 2022
  • Triticale forage has the highest yield of all winter forage crops, including rye, and a cold tolerance within an average low temperature of -10℃ in January. Therefore, this study analyzed the effects of sowing and harvesting times on the feed value and functional components of triticale to optimize the use and supply of triticale as livestock fee Room temperature' can vary widely with climate, season, and time of day. In order to clearly state the conditions of the study in a manner that facilitates replication by other researchers, please consider using an approximate temperature range instead. Seeds of the triticale 'Joseong' were sown during the fall of 2021 (October 20th) and spring of 2022 (March 7th). The triticale was harvested at the following growth stages: seedling stage, booting stage, heading stage, 10 days after heading, and 20 days after heading. The moisture content of each harvested triticale was adjusted to approximately 60%, and the triticale was fermented for silage for 40 days at ambient temperature under anaerobic conditions. We measured the pH and organic acid content of each silage to determine the feed value and functional component. The lactic acid content of the triticale silage harvested at the seedling stage sown in both fall and spring (1.61%, 1.63%) was the highest among all the silages. The octacosanol content in the silages of both fall-sown and spring-sown triticale harvested at the seedling stage (0.38, 0.27 mg/ml) was the highest. Overall, the results revealed that harvesting time had a greater impact on the feed value and functional components of triticale silage than sowing time.

Effects of Several Cooling Methods and Cool Water Hose Bed Culture on Growth and Microclimate in Summer Season Cultivation of Narrowhead Goldenray 'Ligularia stenocephaia' (곤달비 여름재배 시 냉각방법과 냉수호스베드재배가 생육 및 미기상에 미치는 영향)

  • Kim, Ki-Deog;Lee, Eung-Ho;Kim, Won-Bae;Lee, Jun-Gu;Yoo, Dong-Lim;Kwon, Young-Seok;Lee, Jong-Nam;Jang, Suk-Woo;Hong, Soon-Choon
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.116-122
    • /
    • 2011
  • This study was carried out to investigate the effects of several cooling methods such as water hose cooling, mist, fog and control on growth and microclimate, and to develop a simple nutriculture bed for production of fresh leaves of narrowhead goldenaray 'Ligularia stenocephala'. When the root-zone was cooled with 240 L/hr flow rate of $13^{\circ}C$ ground water using water hose, the temperature was lowered approximately by 2 to $3^{\circ}C$ than that of control. The growth of narrowhead goldenaray were favorable in the water hose cooling compared with the other cooling methods. Nutrient culture system having part cooling effect around plant canopy was developed. The system was composed of 15 cm diameter of water hose on side wall of beds, cooling hose, and expanded rice hull media as organic substrate. When cool water which the temperature changed in the range of 14 to $22^{\circ}C$ diurnally with 240 L/hr of flow rate through water hose, the air temperature around canopy and root-zone temperature were dropped by $0.5^{\circ}C$ and $3^{\circ}C$ compared with that of conventional styrofoam bed, respectively. These results showed that newly devised bed system using water hose was simple and economical for the production of high quality narrowhead goldenaray leaves. This system might be practically used both at summer and winter season for the cultivation of narrow head goldenaray by part cooling or heating around root-zone and plant canopy.

A Study on the Soil Respiration in Cutting and Uncutting Areas of Larix leptolepis Plantation (잎갈나무조림지의 벌목지와 비벌목지의 토양호흡에 관한 연구)

  • Lee, Kyu-Jin;Mun, Hyeong-Tae
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1353-1357
    • /
    • 2010
  • Quantification of the ecosystem respiration is essential in understanding the carbon cycling of natural and disturbed landscapes. Soil respiration and some environmental factors which affect soil respiration were investigated in a Larix leptolepis plantation inKongju, Korea. Soil respiration was measured at midday of the $15^{th}$ and $30^{th}$ day of every month from May to December in a non-cutting area (Control) and a cutting area (Treatment) with IRGA Soil Respiration Analyzer. Throughout the study period, average soil temperature and water content were $23.3{\pm}0.5^{\circ}C$ and $27.76{\pm}7.12%$ for control, and $25.9{\pm}3.1^{\circ}C$ and $24.55{\pm}5.12%$ for treatment, respectively. There was a positive correlation ($R^2$=0.8905) between soil respiration and soil temperature in the study area. However, there was no significant correlation between soil respiration and soil moisture ($R^2$=0.4437). The seasonal soil respiration increased in the summer and decreased in the winter. In August, maximum soil respirations in the control and treatment areas were $0.82{\pm}0.13$ and $1.32{\pm}0.10$ $gCO_2{\cdot}^{-2}{\cdot}r^{-1}$, respectively. Total amounts of $CO_2$ evolution in the control and treatment areas from May to December in 2008 were 2,419.2 and 3,610.8 $CO_2g{\cdot}m^{-2}$, respectively. The amount of soil respiration in the treatment area was 49.3% greater than in the control. Increased soil respiration in the treatment area may be due to increased soil temperature, which drives increased microbial decomposition. According to our present investigation, forest cutting will increase the atmospheric $CO_2$ by increasing soil respiration.

Effects of Growth and Cellular Tissue under Abnormal Climate Condition in Chinese Cabbage (이상기상 조건이 배추의 생육 및 세포조직에 미치는 영향)

  • Lee, Sang Gyu;Choi, Chang Sun;Choi, Jun Myung;Lee, Hee Ju;Park, Suhyoung;Do, Kyung Ran
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.87-90
    • /
    • 2013
  • The average annual and winter ambient air temperatures in Korea have risen by $0.7^{\circ}C$ and $1.4^{\circ}C$, respectively, during the last 30 years. Due to climate change, the occurrence of abnormal weather conditions has become more frequent, causing damage to vegetable crops grown in Korea. Hot pepper, chinese cabbage and radish, the three most popular vegetables in Korea, are produced more in the field than in the greenhouse. It has been a trend that the time for field transplanting of seedlings is getting earlier and earlier as the spring temperatures keep rising. Seedlings transplanted too early in the spring take a longer time to resume the normal growth, because they are exposed to suboptimal temperature conditions. This experiment was carried out to figure out the change of cellular tissue of chinese cabbage under the condition of low temperature to provide the information regarding the coming climatic change, on the performance of 'Chunkwang' chinese cabbage during the spring growing season. In our study, plant height, number of leaf, chlorophyll and leaf area was lower at the open field cultivation than heating house treatment after transplanting 50 days. Especially in fresh weight, compared with heating treatment, open field and not heated treatment were notably low with the 1/3 level. Of damage symptoms due to low temperature cabbage leaves about 10 sheets when $-3.0^{\circ}C$ conditions in chinese cabbage was a little bit of water soaking symptoms on the leaves. $-7.4^{\circ}C$ under increasingly severe water soaking symptoms of leaf turns yellow was dry. Microscopy results showed symptoms of $-3.0^{\circ}C$ when the mesophyll cell of palisade tissue and spongy tissue collapse, $-7.4^{\circ}C$ palisade tissue and spongy tissue was completely collapsed. The result of this study suggests that the growers should be cautioned not to transplant their chinese cabbage seedlings too early into the field, and should be re-transplanting or transplanting other plants if chinese cabbage are exposed to suboptimal temperature conditions ($-3.0^{\circ}C$ or $-7.4^{\circ}C$).

Cold Tolerance of Ground Cover Plants for Use as Green Roofs and Walls (옥상 및 벽면녹화용 지피식물의 내한성 비교)

  • Ryu, Ju Hyun;Lee, Hyo Beom;Kim, Cheol Min;Jung, Hyun Hwan;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.32 no.5
    • /
    • pp.590-599
    • /
    • 2014
  • This study was conducted to compare the cold tolerance of seven ground cover species, Orostachys japonica, Sedum oryzifolium, S. kamtschaticum 'SG1', S. reflexum, S. rupestre 'Blue Spruce', S. spurium 'Green Mental', and S. takesimense, which have been used for green roof and wall systems in Korea. Plants were grown in 10-cm pots and 1 g of tissues at stem-end and crown of each species were kept under either light or dark condition, respectively. For cold tolerance tests, plants were initially left at $4^{\circ}C$ and linearly cooled to 0, -4, -8, -12, -16, and $-20^{\circ}C$ at $-2^{\circ}C{\cdot}h^{-1}$ rate. Low temperature injury and regrowth rates were visually evaluated and assessed by image analysis, respectively. The lethal temperature ($LT_{50}$) of plant species was determined using electrolyte leakage measurements. S. reflexum was the most cold tolerant, showing the most survival at $-16^{\circ}C$, whereas S. oryzifolium and S. takesimense showed low temperature injury at $-8^{\circ}C$. Similar results were found with electrolyte leakage measurements at the stem end. For each species, the crown (Mean $LT_{50}:\;-12.15^{\circ}C$) was more cold tolerant than the stem end (Mean $LT_{50}:\;-10.47^{\circ}C$). In conclusion, S. reflexum and S. rupestre 'Blue Spruce' are recommended for planting in the central region of Korea during late fall and early winter, as they were more cold tolerant and showed more vigorous regrowth than the other tested plant species.

Assessment of the Effect of Dimethyl Ether (DME) Combustion on Lettuce and Chinese Cabbage Growth in Greenhouse (온실에서 상추와 배추를 이용한 DME 원료 난방 효율분석)

  • Basak, Jayanta Kumar;Qasim, Waqas;Khan, Fawad;Okyere, Frank Gyan;Lee, Yongjin;Arulmozhi, Elanchezhian;Park, Jihoon;Cho, Wonjun;Kim, Hyeon Tae
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.293-301
    • /
    • 2019
  • The experiment was conducted to determine the performance of DME combustion gas when used as a fuel for DME burner for raising temperature and $CO_2$ concentration in greenhouse and also to examine its effects on chlorophyll content, and fresh and dry weight of lettuce and Chinese cabbage. DME-1 and DME-2 treatments consisted of average DME flow quantity in duct were $17.4m^3min^{-1}$ and $10.2m^3min^{-1}$ respectively to greenhouse-1 and greenhouse-2 and no DME gas was supplied to greenhouse-3 which was left as control (DME-3). DME supply times were $0.5hr\;day^{-1}$, $1hr\;day^{-1}$, $1:30hrs\;day^{-1}$ and $2hrs\;day^{-1}$ on week 1, 2, 3, and 4 respectively. Chlorophyll content and fresh and dry weight of lettuce and Chinese cabbage were measured for each treatment and analyzed through analysis of variance with a significance level of P<0.05. The result of the study showed that $CO_2$ concentration increased up to 265% and 174% and the level of temperature elevated $4.8^{\circ}C$ and $3.1^{\circ}C$ in greenhouse-1 and 2, respectively as compared to greenhouse-3 due to application of DME combustion gas. Although, the same crop management practices were provided in greenhouse-1, 2 and 3 at a same rate, the highest change (p<0.05) of chlorophyll content, fresh weight and dry weight were found from the DME-1 treatment, followed by DME-2. As a result, DME combustion gas that raised the level of temperature and $CO_2$ concentration in the greenhouse-1 and greenhouse-2, might have an effect on growth of lettuce and Chinese cabbage. At end of experiment, the highest fresh and dry weight of lettuce and Chinese cabbage were measured in greenhouse-1 and followed by greenhouse-2. Similarly chlorophyll content of greenhouse-1 and greenhouse-2 were more compared to greenhouse-3. In general, DME was not producing any harmful gas during its combustion period, therefore it can be used as an alternative to conventional fuel such as diesel and liquefied petroleum gas (LPG) for both heating and $CO_2$ supply in winter season. Moreover, endorsed quantify of DME combustion gas for a specified crop can be applied to greenhouse to improve the plant growth and enhance yield.

A Review of Recent Climate Trends and Causes over the Korean Peninsula (한반도 기후변화의 추세와 원인 고찰)

  • An, Soon-Il;Ha, Kyung-Ja;Seo, Kyong-Hwan;Yeh, Sang-Wook;Min, Seung-Ki;Ho, Chang-Hoi
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.237-251
    • /
    • 2011
  • This study presents a review on the recent climate change over the Korean peninsula, which has experienced a significant change due to the human-induced global warming more strongly than other regions. The recent measurement of carbon dioxide concentrations over the Korean peninsula shows a faster rise than the global average, and the increasing trend in surface temperature over this region is much larger than the global mean trend. Recent observational studies reporting the weakened cold extremes and intensified warm extremes over the region support consistently the increase of mean temperature. Surface vegetation greenness in spring has also progressed relatively more quickly. Summer precipitation over the Korean peninsula has increased by about 15% since 1990 compared to the previous period. This was mainly due to an increase in August. On the other hand, a slight decrease in the precipitation (about 5%) during Changma period (rainy season of the East Asian summer monsoon), was observed. The heavy rainfall amounts exhibit an increasing trend particularly since the late 1970s, and a consecutive dry-day has also increased primarily over the southern area. This indicates that the duration of precipitation events has shortened, while their intensity became stronger. During the past decades, there have been more stronger typhoons affecting the Korean peninsula with landing more preferentially over the southeastern area. Meanwhile, the urbanization effect is likely to contribute to the rapid warming, explaining about 28% of total temperature increase during the past 55 years. The impact of El Nino on seasonal climate over the Korean peninsula has been well established - winter [summer] temperatures was generally higher [lower] than normal, and summer rainfall tends to increase during El-Nino years. It is suggested that more frequent occurrence of the 'central-Pacific El-Nino' during recent decades may have induced warmer summer and fall over the Korean peninsula. In short, detection and attribution studies provided fundamental information that needed to construct more reliable projections of future climate changes, and therefore more comprehensive researches are required for better understanding of past climate variations.