• Title/Summary/Keyword: Korean residual soil

Search Result 600, Processing Time 0.036 seconds

Fractionation and Potential Mobility of Heavy Metals in Tailings and Paddy Soils near Abandoned Metalliferous Mines (폐광산 광미와 논토양의 중금속 분획화 및 잠재적인 이동도)

  • Jung, Goo-Bok;Lee, Jong-Sik;Kim, Won-Il;Kim, Jin-Ho;Shin, Joung-Du;Yun, Sun-Gang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.259-268
    • /
    • 2005
  • Most of the tailings have been left without any management in their mines and have become the main source of serious environmental problems in nearby groundwater, stream and cultivated lands. To compare fractionation and potential mobility of heavy metals in tailings and paddy soils near abandoned 10-metalliferous mines in Korea, the distribution and chemical fractions of heavy metal and their mobility in relation to chemical compositions were investigated. The pollution index of heavy metal in mine tailing calculated with the permissible levels were in the order Cheongyang>Dogok>Beutdeun>Baegwoul mine, which were considered sufficient to raise environmental problems. The rates of 0.1M-HCl extractable Cd, Cu, Pb, Zn, and Ni to total content in paddy soils were 49.1, 50.7, 26.8, 18.4 and 2.9%, respectively, and their rates of heavy metals in paddy soils were higher than that of mine tailing. Dominant chemical forms of heavy metals in tailings were sulfide and residual form (63-91%), specially, the exchangeable portion of Cd (21%) was relatively higher than that of other metals in paddy soils. The mobility factor of heavy metals in tailings and paddy soils was in the order Cd>Zn>Cu>Pb, and the mobility factor in tailing varied considerably among the mines. The potential mobility of heavy metals in tailings showed significant positive correlation with water-soluble $Al^{3+}$ and $Fe^{3+}$ contents, while in paddy soils, it correlated negatively with soil pH values.

Effect of Reduced Fertilization Considering Residual Soil Nutrients on Rice Yield and Salt Removal in Greenhouse Vegetables and Rice Cropping System (토양 잔존 양분을 고려한 시설채소 후작 벼의 감비 재배에 따른 벼 수량과 토양 염류 제거 효과)

  • Jeon, Weon-Tai;Park, Hyang-Mi;Chung, Joung-Bae;Park, Ki-Do;Park, Chang-Young;Yang, Won-Ha
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.2
    • /
    • pp.85-91
    • /
    • 2005
  • Nutrients are built up in paddy soils after greenhouse vegetable cultivations with relatively high rates of chemical fertilizers and composts during winter season, and the continuous nutrient accumulation is problematic in crop cultivation. Rice cultivation after greenhouse vegetables is one option for removing the accumulated nutrients in the soils. The object of this experiment was to examine the effect of reduced fertilization to rice on the removal of accumulated soil nutrients and rice yield in greenhouse vegetables and rice cropping system. Experiments were carried out at Changwon and Uiryeong in Gyeongnam province in 2001. The cropping systems were watermelon-rice and pumpkin-watermelon-watermelon-rice in Changwon and Uiryeong, respectively. The soils were Gangseo series (coarse loamy, mixed, nonacid, mesic family of Aquic Fluventic Eutrochrepts) at Changwon and Hampyeong series (fine loamy, mixed, mesic family of Fluvaquentic Dystrochrepts) at Uiryeong. Treatments of conventional fertilization ($N-P_2O_5-K_2O=11-4.5-5.7$, $kg\;10a^{-1}$), no basal fertilization, no top dressing, and no fertilization were included in the experiments. Plant growth and total nitrogen content in the plant were greater as the amount of fertilizer applied were increased. Whereas $SiO_2/T-N$ rate in rice plant and nitrogen use efficiency were greater as the amount of fertilizer applied were reduced. Rice yields were not significantly different among the treatments of conventional, no top-dressed, and no-basal fertilization in Uiryeong, and the rice yields were significantly also not different between the treatments of conventional and no top-dressed in Changwon. The removal of salts in soils after rice cultivation was the highest at the treatment of no-basal fertilization in both of the sites. Therefore, reduced fertilization for rice cultivation after greenhouse vegetables could remove salts accumulated in paddy soils without any significant reducing of rice yield.

Evaluation of Neonicotinoid Pesticides' Residual Toxicity to Honeybees Following or Foliage Treatment (네오니코티노이드계 농약의 사용방법에 따른 꿀벌엽상잔류 독성 평가)

  • Jin Ho Kim;Chul-Han Bae;ChangYul Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.484-497
    • /
    • 2024
  • Neonicotinoid pesticides, widely used worldwide as potent insecticides, have been found to have detrimental effects on the environment and living organisms due to their persistent residues. This study aimed to investigate the neonicotinoid pesticides, imidacloprid, and clothianidin, focusing on their impact on honey bee toxicity and foliar residue levels. Alfalfa was selected as control crop while bell peppers, and cucumbers were chosen as representative application crops, respectively. The investigation involved comparing the toxicity and foliar residue levels resulting from soil and foliar treatments, with a focus on identifying potential shortcomings in conventional foliar residue toxicity testing methods. Imidacloprid and clothianidin were applied to crops or soil at recommended rates and through irrigation. The honey bee mortality rate (RT25) over time was determined, and pesticide residues on leaves were quantified using High-Performance Liquid Chromatography (HPLC). The results revealed that foliar treatment with imidacloprid on alfalfa resulted in an RT25 of less than 1 day, with residues ranging from 1.07 to 19.27 mg/kg. In contrast, application on bell peppers showed RT25 within 9 days, with residues ranging from 1.00 to 45.10 mg/kg. Clothianidin foliar treatment displayed RT25 within 10 days on alfalfa, with residues between 0.61 and 2.57 mg/kg. On bell peppers, RT25 was within 28 days, with residues ranging from 0.13 to 2.85 mg/kg. Soil treatment with imidacloprid and clothianidin in alfalfa exhibited minimal impact on honey bees and residues of 0.05 to 0.37 mg/kg. However, in applied crops, imidacloprid showed RT25 within 28 days and residues ranging from 4.47 to 130.43 mg/kg, while clothianidin exhibited RT25 within 35 days and residues between 5.96 and 42.32 mg/kg. In conclusion, when comparing honey bee toxicity and foliar residues among crops, application crops had a more significant impact on honey bee mortality and higher residue levels compared to control crops. Moreover, soil treatment for application crops resulted in higher RT25 and residue levels compared to foliar treatment. Therefore, to ensure pesticide safety and environmental sustainability, diverse research approaches considering different crops and application methods are necessary for the safety assessment of imidacloprid and clothianidin.

Studies on the Method of Ground Vegetation Establishment of Denuded Forest Land in the Mudstone Region - The Characteristics of Mudstone and Speeded-up Reforestation - (니암지대황폐림지(泥岩地帶荒廢林地)의 지피식생(地被植生) 조성방법(造成方法)에 관(關)한 연구(硏究) - 니암특성((泥岩特性)과 조기녹화(早期綠化) -)

  • Chung, In Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.19 no.1
    • /
    • pp.1-23
    • /
    • 1973
  • The results of ground vegetation experiment conducted at completely denuded forestland in the mudstone region are summerized as follows: On the reaults of soiling quantity the effect of soiling was observed where depth of soiling over 10 cm was practiced, and a plot where treated with 15cm soiling and without fertilizer showed poor growth and it was even worser than the plot where soiling was practiced only 1 cm in thikness but applied adequate amount of fertilizers. The depth of slits between 30cm and 40cm showed no significant difference in the effect. A plot where covered with vegetation bag showed somewhat better results in seed loss and early growth but no differences observed in the fall result over the none covered plot. And then, it is recommendable to have soiling over 10cm in thikness with slit of 30cm and 30cm in depth and to apply 30 gram of fertilizer (22;22:11, 50 gram) per slit. On various soiling materials trial there were no striking differences in the effect of soiling between weathered granite soil, wheathered tuffs soil and weathered mudstone soil. In the treatment with various green materials, a plot treated with straw mat showed a significant difference at 1 percent. The results show that weathered mudstone soil is effective to use as soiling materials and straw mat treatment was better. On forest fertilization trial, in the mudstone region where red and black pine trees already existing at a rate of 2,000-3,000 trees per hectare had applied 110kg of compound fertilizers (9:12:3 and 22:22:11) per hectare basis in terms of plant nutrient. As a result, the difference in effect between the compound fertilizers was not found however the leaf color and leaf length of the fertilizer added plot showed darker and longer at 30 percent over the no fertilizer received plot. Compound fertilizers, 14:37:12 and 9:12:3 were applied to alder trees at a rate of 20 gram and 40 gram per tree in terms of plant nutrient and a remarkable growth accelerantion was observed where 40 grams of plant nutrient applied. The effect difference between the compound fertilizers was not found. On investigation of tree root elongation, forty years old red pine trees showed only 15cm tap root elongation through mudstone while black pine had 23 cm tap root elongation. The total length of supporting root elongtion of red and black pines showed 20 and 13 meters, respectively. The tap roots of Black locusts were not able to elongate through mudstone, however, the supporting roots tended to develop to the underneath of pine tree where some moisture content is available. Black locusts And grown on the residual soil of mudstone normally die between 8 to 10 years. The red pine trees show flat in tree shape while black pine had triangle in the shape. With the results it can be said that in an artificial reforestation in denuded forest land of the mudstone region the adequate slit and enough amount of fertiliizer application must be provided for the succesful performance of the program. On integrated experimental results of 1972. for the establishment of ground vegetation on the completely denuded forest land in mudstone region, soiling could be effectively practiced with weathered mudstone soil and it would not specially necessiate to have either weathered granite or tuffssoil for the soiling. And the soiling depth should be more than 10 cm in thickness. Among green materials used the straw mat proved to be the most effective reatment. Three major factors which enable to establish ground vegetation by the shortest period of time: A. Physical improvement of soil is necessary to breakdown of the horizontal cracks sushas Slit, contour line plot, seeding hole and etc., and soiling with weathered mudstone soil. B. Chemical improvement of soil: is needed sufficient amount of fertilizer application 300~400kg ha, $N+P_2O_5+K_2O$), and increased production of ground covering and expedite resolution of the vegetation (ground vegetation, fallen leaves and twigs). C. Complete establishment of the basic structure for the erosion control (Prevention of surface soil erosion)

  • PDF

Fractionation and Availability of Heavy Metals in Paddy Soils near Abandoned Mining Areas (광산인근 논토양의 중금속 분획화 및 유효도)

  • Jung, Goo-Bok;Kim, Won-Il;Ryu, In-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.319-323
    • /
    • 2000
  • This study was conducted to compare fractionations and availability of heavy metal in paddy soils near five abandoned mining areas. The sequential extraction procedure was used to fractionate the heavy metals in soils into the designated from water $soluble(H_2O)$, $exchangeable(0.5M\;KNO_3)$, organically bound(0.5M NaOH), $oxide/carbonate(0.05M\;Na_2-EDTA)$, and $sulfide/residual(4M\;HNO_3)$. EDTA and $HNO_3$ extractable of Cd, Pb, and Zn, and NaOH and $HNO_3$, extractable of Cu were predominant chemical forms. The ratio of $H_2O+KNO_3$ extractable of Cd, Zn, Cu, and Pb were 25.1, 8.7, 4.0, and 0.4%, respectively. The ratio of $H_2O+KNO_3$ extractable heavy metal were negatively correlated with soil pH, while $EDTA+HNO_3$ extractable heavy metal were positively correlated. The most consistent distribution patterns were found when the soil samples were grouped according to their total contents. Specially, the ratio of $H_2O+KNO_3$ extractable heavy metal were higher as total contents of heavy metal were increased. The ratio of $H_2O+KNO_3$ extractable heavy metal(Cd 1.06, Cu 0.15, Pb 0.01, and Zn 0.05%) were lower at the high soil pH than those(Cd 31.31, Cu 4.06, Pb 1.75, and Zn 10.16%) at the low level. Compared to other chemical forms, the degree of contribution for $KNO_3$ extractable form to the Cd uptake to brown rice was high, whereas that for EDTA and $HNO_3$ extractable forms were high to the Zn.

  • PDF

Characteristics of Heavy Metal Contamination in Residual Mine Tailings Near Abandoned Metalliferous Mines in Korea (국내 폐금속광산 주변 잔류광미의 중금속 오염특성)

  • Jung, Goo-Bok;Kim, Won-Il;Lee, Jong-Sik;Lee, Jae-Saeng;Park, Chan-Won;Koh, Mun-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.222-231
    • /
    • 2005
  • Most of the tailings have been left without any management in abandoned metalliferous mines and have become the main source of heavy metal contamination of agricultural soils and crops in the these areas. To compare of environmental assessment of heavy metals in tailings derived from various 25-metalliferous mines in Korea, 3 different analysis methods such as water soluble, 0.1 M-HCl extractable, and total acid digestion method (aqua regia) were used. The chemical composition of water soluble in mine tailing were in the order ${SO_4}^{2-}>Ca^{2+}>Mn^{2+},\;Na^+,\;Al^{3+}>Mg^{2+},\;Fe^{3+}>Cl^-$. Specially, pH, EC, ${SO_4}^{2-},\;and\;Ca^{2+}$ concentrations in tailing varied considerably among the different mines. The average total concentrations of Cd, Cu, Pb, Zn, and As in tailing were 31.8, 708, 4,961, 2,275 and 3,235 mg/kg, respectively. Specially, the contents of Cd, Zn and As were higher than those of countermeasure values for soil contamination (Cd : 4, Zn : 700 and As : 15 mg/kg in soil) by Soil Environmental Conservation Act in Korea. The rates of water soluble heavy metals to total contents in tailings were in the order Cd > Zn > Cu > Pb > As. The rates of 0.1M-HCl extractable Cd, Cu, Pb, Zn, and As (1M-HCl) to total content were 17.4, 10.2, 6.5, 6.8 and 11.4% respectively. The enrichment factor of heavy metals in tailings were in the order As > Pb > Cd > Cu > Zn. The pollution index in tailing Au-Ag mine tailing were higher than those of other mine tailing. As a results of enrichment factor and pollution index for heavy metal contaminations in mine tailing of metalliferous mines, the main contaminants are mine waste materials including tailings.

Exposure Assessment of Pesticide-Originated Persistent Organic Pollutants in Paddy and Upland Soils in Korea (국내 논토양 및 밭토양 중 농약유래 잔류성유기오염물질의 노출량 평가)

  • Lim, Sung-Jin;Oh, Young-Tak;Ro, Jin-Ho;Kim, Seung-Yong;Joo, Hyeong-Gon;Lee, Min-Ho;Yoon, Hyo-In;Choi, Geun-Hyoung;Ryu, Song-Hee;Park, Byung-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.3
    • /
    • pp.211-216
    • /
    • 2017
  • BACKGROUND:This study was conducted to investigate residual organochlorine pesticides (ROCPs) in agricultural soils and crops. Agricultural soil samples and crop samples were collected from 93 cities and counties. METHODS AND RESULTS: Extraction and clean-up for the quantitative analysis of ROCPs were conducted by the modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method. Recovery and limit of detection (LOD) of ROCPs in agriculturalsoils and crops were 76.5-103.0 and 75.2-93.2%, 0.01-0.08 and $0.10-0.15{\mu}g/kg$, respectively. Detected ROCPs in agricultural soils were ${\alpha}$-endosulfan, ${\beta}$-endosulfan, and endosulfan sulfate, the residue were 2.0-12.0, 1.2-53.1, and $2.2-329.8{\mu}g/kg$, respectively. But these pesticides in all green perilla leaf and green pepper samples were not detected. CONCLUSION: These results showed that ROCPs residues in agricultural soils were not as high as crop safety threatening.

A Study on the Reinforcement of Rock Faults by Grouting (암석 절리면의 그라우팅에 의한 보강에 관한 연구)

  • Chun, Byung-Sik;Choi, Joong-Keun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.4
    • /
    • pp.45-51
    • /
    • 2003
  • Grouting materials in rock is grouted as vein type along the fault surface by the other way for soil and allow a change of characteristics in rock faults as a result of that. Therefore the deformation characteristics of rock faults after grouting differ as a direction and characteristic of grouted fault and stress condition of field rock. Thereby it must be analyzed the effect for deformation of rock according to characteristics of rock faults and characteristics of grouting materials to accurately evaluate the reinforced effect by grouting. But grouting method used in field until present depends on experience of workers, and inspection for those effects are evaluated by measurement of elastic wave velocity, permeability tests and etc. in field. In this study, it was investigated that the effects for shear characteristics of maximum shear strength, residual shear strength and etc. by comparison and analysis of test results which were worked by direct shear tests of rock faults with changing a type of grouting materials and the grouting depth(t) for average width(a) of fault surface roughness when OPC(Ordinary Portland Cement) and Micro cement was grouted in fault surface of field rock to evaluate characteristicsof the shear deformation for rock fault surface of dam by grouting.

  • PDF

Simulation of Solitary Wave-Induced Dynamic Responses of Soil Foundation Around Vertical Revetment (고립파 작용하 직립호안 주변에서 지반의 동적응답에 관한 수치시뮬레이션)

  • Lee, Kwang-Ho;Yuk, Seung-Min;Kim, Do-Sam;Kim, Tae-Hyeong;Lee, Yoon-Doo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.6
    • /
    • pp.367-380
    • /
    • 2014
  • Tsunami take away life, wash houses away and bring devastation to social infrastructures such as breakwaters, bridges and ports. The targeted coastal structure object in this study can be damaged mainly by the tsunami force together with foundation ground failure due to scouring and liquefaction. The increase of excess pore water pressure composed of oscillatory and residual components may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, the solitary wave was generated using 2D-NIT(Two-Dimensional Numerical Irregular wave Tank) model, and the dynamic wave pressure acting on the seabed and the estimated surface boundary of the vertical revetment. Simulation results were used as an input data in a finite element computer program(FLIP) for elasto-plastic seabed response. The time and spatial variations in excess pore water pressure, effective stress, seabed deformation, structure displacement and liquefaction potential in the seabed were estimated. From the results of the analysis, the stability of the vertical revetment was evaluated.

Numerical Analysis on Settlement Behavior of Seabed Sand-Coastal Structure Subjected to Wave Loads (파압에 의한 해안구조물-해저지반의 침하거동에 대한 수치해석)

  • Kang, Gi-Chun;Yun, Seong-Kyu;Kim, Tae-Hyung;Kim, Dosam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.1
    • /
    • pp.20-27
    • /
    • 2013
  • Seabed settlement underneath a coastal structure may occur due to wave loading generated by storm surge. If the foundation seabed consists of sandy soil, the possibility of the seabed settlement may be more susceptible because of generation of residual excess pore-water pressure and cyclic mobility. However, most coastal structures, such as breakwater, quay wall, etc., are designed by considering wave load assumed to be static condition as an uniform load and the wave load only acts on the structure. In real conditions, however, the wave load is dynamically applied to seabed as well as the coastal structure. In this study, therefore, a real-time wave load is considered and which is assumed acting on both the structure and seabed. Based on a numerical analysis, it was found that there exists a significant effect of wave load on the structure and seabed. The deformation behavior of the seabed according to time was simulated, and other related factors such as the variation of effective stress and the change of effective stress path in the seabed were clearly observed.