DOI QR코드

DOI QR Code

Numerical Analysis on Settlement Behavior of Seabed Sand-Coastal Structure Subjected to Wave Loads

파압에 의한 해안구조물-해저지반의 침하거동에 대한 수치해석

  • Kang, Gi-Chun (Research Institute of Industrial Technology(RIIT), Korea Maritime University) ;
  • Yun, Seong-Kyu (Departments of Civil and Environmental Engineering, Korea Maritime University) ;
  • Kim, Tae-Hyung (Department of Civil Engineering, Korea Maritime University) ;
  • Kim, Dosam (Department of Civil Engineering, Korea Maritime University)
  • 강기천 (한국해양대학교 산업기술연구소) ;
  • 윤성규 (한국해양대학교 토목환경공학과) ;
  • 김태형 (한국해양대학교 건설공학과) ;
  • 김도삼 (한국해양대학교 건설공학과)
  • Received : 2013.01.29
  • Accepted : 2013.02.18
  • Published : 2013.02.28

Abstract

Seabed settlement underneath a coastal structure may occur due to wave loading generated by storm surge. If the foundation seabed consists of sandy soil, the possibility of the seabed settlement may be more susceptible because of generation of residual excess pore-water pressure and cyclic mobility. However, most coastal structures, such as breakwater, quay wall, etc., are designed by considering wave load assumed to be static condition as an uniform load and the wave load only acts on the structure. In real conditions, however, the wave load is dynamically applied to seabed as well as the coastal structure. In this study, therefore, a real-time wave load is considered and which is assumed acting on both the structure and seabed. Based on a numerical analysis, it was found that there exists a significant effect of wave load on the structure and seabed. The deformation behavior of the seabed according to time was simulated, and other related factors such as the variation of effective stress and the change of effective stress path in the seabed were clearly observed.

태풍에 의해 발생된 파랑하중에 의해 방파제, 안벽 등과 같은 해안구조물 하부의 해저지반 침하가 발생될 수 있다. 만약 해저지반이 모래인 경우, 잔류과잉간극수압발생과 반복적인 파랑하중에 의해 해저지반의 침하현상이 더 발생될 확률이 높아질 것이다. 그러나 대부분의 해안구조물은 설계에서 파랑하중을 정적상태의 등분포하중으로 구조물에만 작용하는 것으로 가정하고 있지만 실제로는 동적인 파랑하중이 구조물과 해저지반에 동시에 작용한다. 따라서 본 연구에서는 시간에 따른 실제파압을 고려하고, 구조물뿐만 아니라 해저지반에도 작용하는 것으로 고려하였다. 수치해석 결과 파랑하중이 구조물과 해저지반에 큰 영향을 미친 것으로 나타났다. 시간에 따른 해저지반의 변형거동이 해석되었으며 해저지반에서 유효응력의 변화와 유효응력경로의 변화를 분명하게 확인할 수 있었다.

Keywords

References

  1. 박우선, 안희도 (1995). 충격파력을 받는 케이슨 방파제의 동적 해석 모델. 한국해안해양공학회지, 7(1), pp.108-115.
  2. 이광호, 범성심, 김도삼, 박종배, 안성욱 (2012a). 공진장치에 의한 단주기파랑의 제어에 관한 연구. 한국해안.해양공학회논 문집, 24(1), pp.36-47. https://doi.org/10.9765/KSCOE.2012.24.1.036
  3. 이광호, 박정현, 김도삼 (2012b). 3차원불규칙파동장하의 진동수 주형 파력발전구조물에서 불규칙공기흐름의 수치시뮬레이션. 한국해안.해양공학회논문집, 24(3), pp.189-202. https://doi.org/10.9765/KSCOE.2012.24.3.189
  4. 이달수, 김창일, 염기대 (2004). 경사제에 작용하는 총파력: I. 수평파력. 대한토목학회 정기학술대회집, pp.1029-1035.
  5. 장병욱, 도덕현, 송찹섭 (1993). 파랑하중에 의한 해저지반의 액상화 평가. 한국지반공학회지, 9(4), pp.17-26.
  6. Cho, S.-H. (2007). A study on the Characteristics of Cheju Island's Beach Sands, Cheju National University, Master Thesis.
  7. de Groot, M. B., Bolton, M. D., Foray, P., Meijers, P., Palmer, A. C., Sandven, R., Sawicki, A. and Teh, T. C. (2006a). Physics of liquefaction phenomena around marine structures. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 132(4), pp.227-243. https://doi.org/10.1061/(ASCE)0733-950X(2006)132:4(227)
  8. de Groot, M. B., Kudella, M., Meijers, P. and Oumeraci, H. (2006b). Liquefaction phenomena undernearth marine gravity structures subjected to wave loads. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 132(4), pp.325-335. https://doi.org/10.1061/(ASCE)0733-950X(2006)132:4(325)
  9. Goda, Y. (2000). Random seas and design of maritime structures. Advanced Series on Ocean Engineering. 15 (2 ed.). Singapore: World Scientific. ISBN-981-02-3256-6.
  10. Iai, S., Matsunaga, Y. and Kameoka, T. (1992a). Strain space plasticity model for cyclic mobility, Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, 32(2), pp.1-15.
  11. Iai, S., Matsunaga, Y. and Kameoka, T. (1992b). Analysis of undrained cyclic behavior of sand under anisotropic consolidation. Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, 32(2), pp.16-20.
  12. Ishihara, K. (1996). Soil behaviour in earthquake geotechnics, Oxford University Press Unc., New York, pp.152-179.
  13. Lee, W.-M. (2011). Subsidence Analysis of West Breakwater Construction of Jeju Harbor. Cheju National University, Master Thesis.
  14. Oumeraci, H., Partenscky, H.W., Kohlhase, S. and Klammer, P. (1992). Impact loading and dynamic response of caisson breakwaters-Results of large-scale model tests. Coastal Engineering, 1,pp.475-1,488.
  15. Ozutsumi, O., Sawada, S., Iai, S., Takeshima, Y., Sugiyama, W. and Shimasu, T. (2002). Effective stress analyses of liquefaction-induced deformation in river dikes. Journal of Soil Dynamics and Earthquake Engineering, 22, pp.1075-1082. https://doi.org/10.1016/S0267-7261(02)00133-1
  16. Richart, F.E., Hall, J.R. and Wood, R.D. (1970). Vibrations of soils and foundations, Prentice Hall, Englewood Cliffs.
  17. Sawada, S., Ozutsumi, O. and Iai, S. (2000). Analysis of liquefaction induced residual deformation for two types of quay walls: analysis by "FLIP", Proceedings of the 12th World Conference on Earthquake Engineering (Auckland), No.2486.
  18. Towata, I. and Ishihara, K. (1985). Modeling soil behaviour under principal stress axes rotation, Proceeding of the Fifth International Conference on Numerical Method in Geomechanics, 1, pp.523-530.
  19. Zienkiewicz, O.C. and Bettess, P. (1982). Soils and other saturated media under transient, dynamic conditions, Soil mechanics-Transient and Cyclic Loads (Pande and Zienkiewicz eds.), John Wily and Sons, pp.1-16.

Cited by

  1. Simulation of Solitary Wave-Induced Dynamic Responses of Soil Foundation Around Vertical Revetment vol.26, pp.6, 2014, https://doi.org/10.9765/KSCOE.2014.26.6.367
  2. Characteristics and Causes of Wave-Induced Settlement in Caisson Breakwater: Focusing on Settlement Data vol.30, pp.7, 2014, https://doi.org/10.7843/kgs.2014.30.7.27
  3. Bore-induced Dynamic Responses of Revetment and Soil Foundation vol.27, pp.1, 2015, https://doi.org/10.9765/KSCOE.2015.27.1.63