• Title/Summary/Keyword: Korean ground motion

Search Result 621, Processing Time 0.029 seconds

Reduction of the Residual Vibrations of a Flexible Cantilever Beam Subjected to a Transient Translation or Rotation Motion (병진 또는 회전하여 위치 이동하는 유연 외팔보의 잔류진동 저감 방법)

  • Shin, Ki-Hong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.3-10
    • /
    • 2008
  • In this paper, the optimal command input is considered in order to minimize the residual vibrations of a flexible cantilever beam when the beam simply changes its position by translation or rotation. Although a cantilever beam has many modes of vibration, it is shown that the consideration of the first mode is sufficient in this case. Thus, the problem becomes a single-degree-of-freedom system subjected to a ground excitation. Two simple methods are proposed to find the optimal command input based on the shock response spectrum (SRS). The first method is the simplest and can be applied to lightly damped cases, and the second method is applicable to more general problems. The second method gives almost the same results as the input shaping method. However the proposed method gives a easier and clearer control strategy.

Development of Lunar Llander Thruster for Ground Test (달 착륙선 지상시험용 추력기 개발)

  • Lee, Jong-Lyul;Kim, In-Tae;Kim, Su-Kyum;Han, Cho-Young;Yu, Myoung-Jong;Kim, Ki-Ro;Byun, Do-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.135-138
    • /
    • 2011
  • As a basic research for the development of Korean lunar lander, propulsion system development for ground test is in progress. Thrust for descent is 200 N class. Design target is 220 N in vacuum thrust at 100 g/s flow rate, 200 psi chamber pressure. For ground test, thrust measurement system using LM guide was developed and test was performed. The result shows 160 N thrust in atmosphere condition at 210 psi chamber pressure.

  • PDF

Performance improvement of lunar lander thruster (달 착륙선 지상시험용 추력기 성능개선)

  • Lee, Jong-Lyul;Choi, Ji-Yong;Jun, Hyoung-Yoll;Han, Cho-Young;Kim, Su-Kyum;Won, Su-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.42-45
    • /
    • 2012
  • As a basic research for the development of Korean lunar lander, propulsion system development for ground test is in progress. Design target is 220 N in ground thrust at 130 g/s flow rate, 200 psi chamber pressure. For the performance improvement, two type injector and catalyst bed was designed. For ground test, thrust measurement system using LM guide was developed and test was performed. The result shows 214.1 N thrust in atmosphere condition at 126.6 g/s flow rate.

  • PDF

Quantitative Analysis on Intensity of 1936 Jirisan Earthquake by Estimating Seismic Response Characteristics at the Site of Five-story Stone Pagoda in Ssang-gye-sa (쌍계사 오층 석탑 부지의 지진 응답 특성 평가를 통한 1936년 지리산 지진 세기의 정량적 분석)

  • Sun, Chang-Guk;Chung, Choong-Ki;Kim, Jae-Kwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.187-196
    • /
    • 2008
  • An earthquake of magnitude 5.0 occurred at Ssang-gye-sa, a Buddhist temple in Jirisan, located near the southern border of the Korean peninsula on 4 July 1936. It resulted in severe damage of several buildings and structures in Ssang-gye-sa. Particularly, the top component of a five-story stone pagoda in the temple was tipped over and fell down during the earthquake. This earthquake damage case would be usefully applied to estimating the intensity of ground motion in the Korean peninsula, a moderate seismicity region, where strong motion has never been recorded with the exception of historic seismic events. In order to estimate the local site effects and the corresponding ground motion at Ssang-gye-sa site, intensive site investigations including borehole drilling and in-situ seismic tests such as crosshole and SASW tests were performed in the temple area. Based on the site characteristics, site-specific seismic response analyses using various input motions were conducted for a representative Ssang-gye-sa site by means of both one-dimensional equivalent-linear and nonlinear methods with six input rock outcrop acceleration levels ranging from 0.044g to 0.220g. The resultant site-specific seismic responses indicated the amplified ground motions in the short-period range near the site period of Ssang-gye-sa. Furthermore, the intensity on rock outcrop of the 1936 Jirisan earthquake was estimated by making a comparison between the site responses analysis results in this study and the full-scaled seismic test of pagoda model in the prior study.

Effect of Eversion Characteristics on Knee and Ankle Joint of Trans-tibial Amputees (인공의족의 외반 특성이 하퇴절단자의 무릎과 발목에 미치는 영향)

  • Bae, Tae-Soo;Chang, Yun-Hee;Kim, Shin-Ki;Mun, Mu-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.886-891
    • /
    • 2009
  • One of the important functions of prosthetic foot is the foot inversion-eversion which is so important when walking on uneven surfaces. The aim of our study was to evaluate the effect of foot eversion angle especially on knee and ankle joint for transtibial amputees by motion analysis. The experimental data were collected from three transtibial amputees and then ten healthy individuals. To simulate walking on side sloping ground, we used custom-made slope (5, 10, 15 degrees). Motion analysis was performed by 3-dimensional motion analyzer for 6 dynamic prosthetic feet. The results showed that knee abduction moments of amputated leg were decreased but those of sound leg were mainly increased as foot eversion angle increased. And ankle abduction moments of sound leg were inconsistent in magnitude and tendency between control and experimental group. Therefore foot eversioncharacteristics should be considered to develop advanced prosthetic foot.

LOS(line-of-sight) Stabilization Control of OTM(on-the-move) Antenna Driven by Geared Flexible Transmission Mechanism (기어와 유연축을 갖는 구동계로 구동되는 OTM 안테나 시선의 안정화 제어)

  • Kang, Min-Sig;Yoon, Wo-Hyun;Lee, Jong-Bee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.951-959
    • /
    • 2011
  • In this study, an OTM(on-the-move) antenna which is mounted on ground vehicles and is used for mobile communication between vehicle and satellite while moving was addressed. Since LOS(line-of-sight) of antenna should direct satellite consistently while vehicle moving to guarantee high satellite communication quality, active antenna LOS stabilization is a core technology for OTM antenna. Stabilization of a satellite tracking antenna which consists of 2-DOF gimbals, an elevation gimbal over an azimuth gimbal, was considered in this study. In consideration of driving mechanism which consists of gear train and flexible driving shafts, a two-mass-system dynamic model coupled with vehicle motion was presented. An internal PI-control loop + outer PI-control loop structure has been suggested in order to damp the torsional vibration and stabilize control system. The classical pole-placement method was applied to design control gains. In addition, a vehicle motion compensation control beside of the feedback control loop has been suggested to improve LOS stabilization performances. The feasibility of the proposed control design was verified along with some experimental results.

Stabilization Control of line of sight of OTM(On-The-Move) Antenna (OTM 단말기 안테나 시선 안정화 제어)

  • Kang, Min-Sig;Cho, Yong-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2073-2082
    • /
    • 2010
  • The 4-th generation of mobile communication aims to realize global, fast and mobile communication service. The satellite communication charges a key role in this field. In this study, an OTM(On-The-Move) antenna which is mounted on ground vehicles and is used for mobile communication between vehicle and satellite was addressed. Since vehicles move during communication, active antenna line-of-sight stabilization is a core technology to guarantee high satellite communication quality. Stabilization of a satellite tracking antenna which consists of 2-DOF gimbals, an elevation gimbal over an azimuth gimbal, was considered in this study. Various disturbance torques such as static and dynamic mass imbalance torques, variation of moment of inertia according to elevation angle, friction torque related to vehicle motion, equivalent disturbance torque due to antenna roll motion, etc. were analyzed. As a robust stabilization control, rate feedback with sliding mode control and position feedback with proportional+integral control was suggested. To compensate antenna roll motion, a supplementary roll rate feed forward control was included beside of the feedback control loop. The feasibility of the analysis and the proposed control design were verified along with some simulation results.

Aseismic design concept for underground space based on site response analysis (부지응답해석에 기초한 지하공간 내진설계 개념)

  • Park, Inn-Joon;Yoo, Ji-Hyeung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.3
    • /
    • pp.257-264
    • /
    • 2010
  • This study proposed the aseismic design concept for underground space based on site response analysis and laboratory tests. The results of this study showed that the location of the control points of input motions such as design response spectra and time history of acceleration and the assumption of bedrock properties such as elasticity or rigidity play an important role in aseismic design of underground space. Therefore, the appropriate ground response model among models applying motions such as free surface motion, bedrock motion, or bedrock outcropping motion must be utilized to provide reasonable boundary conditions of underground space under earthquake loading and practical aseismic design.

Evaluation of Effective Jamming/Deception Area of Active Decoy against Ground Tracking Radars on Dynamic Combat Scenarios (동적 교전 시나리오에서 지상 추적 레이다에 대한 이탈방사체의 효과적 재밍/기만 영역 분석)

  • Rim, Jae-Won;Lee, Sangyeob;Koh, Il-Suek;Baek, Chung;Lee, Seungsoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.269-278
    • /
    • 2017
  • We analyze the jamming/deception performance of an active decoy against ground tracking radars on dynamic combat scenarios. Based on the movement and the interference flow of an airborne platform, the trajectories of the active decoy is accurately calculated by solving 6-degree of freedom equations of motion. On realistic combat scenarios, numerical simulations are examined to analyze the jamming performance of the decoy for various movements of the platform and RF specifications of the active decoy. Effective jamming/deception area against the ground tracking radars is estimated from the simulation.

A Numerical Study on the Ground Effect of a Circular Cylinder in the Presence of a Moving Wall (이동벽면에 의한 원형 실린더의 지면효과에 관한 전산연구)

  • Jung, Jae-Yoon;Chang, Jo-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.4
    • /
    • pp.1-10
    • /
    • 2006
  • A computational study was carried out in order to investigate the ground effect of a circular cylinder in the presence of a moving wall at a Reynolds number of 2.0${\times}$104. The viscous-incompressible Navier-Stokes equations and Spalart-Allmaras turbulent model of the commercial CFD code were adopted for this numerical analysis. The moving wall was set parallel with the freestream, and the speed of motion was equal to the freestream velocity. The gap ratio is defined as the distance ratio between the circular cylinder diameter and the height from the moving wall. The numerical results show that there are the differences among the each of the stages in evidence of the vorticity contours and the polar diagrams of $C_l$ vs. $C_d$. The 4 stages of the gap ratio are defined according to the flow features, whose stages are divided into small, intermediate, large and convergence gap ratios, respectively.

  • PDF