• Title/Summary/Keyword: Korean granite

Search Result 1,563, Processing Time 0.025 seconds

The Optimal Method to Determine Damage Threshold of Rock using Hwangdeung Granite (황등화강암을 이용한 암석의 손상기준 결정방법 연구)

  • Jang, Bo-An;Ji, Hoon;Jang, Hyun-Shic
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.89-100
    • /
    • 2010
  • Although various methods for determination of damage threshold in rock have been suggested, clear damage thresholds were determined by some methods, but different thresholds were measured by other methods. We determined the damage thresholds in Hangdeung granite using all the methods suggested, and investigated the best methods, applicability and errors of each method. The crack initiation threshold and the crack damage threshold which are important in investigation of characteristics of crack development and failure were verified by field strength ratio method and long-term constant load test. The crack closure stress and the crack initiation stress were 57.5 MPa and 77.6 MPa, and the most exact values were yielded by crack volumetric strain. The secondary crack initiation stress was 90.6 MPa and AE event count and AE event count rate were the effective methods. The volumetric stiffness, AE event count and AE event count rate were the most effective methods for determination of crack coalescence threshold and crack coalescence stress was 110.3 MPa. The crack damage stress was 127.5 MPa and was measured correctly by volumetric stiffness and AE event count rate. The ratio between crack initiation stress and uniaxial compressive strength was 0.47 which was very similar with the FSR value of 0.46. The ratio between crack damage stress and uniaxial compressive strength was almost the same as the ratio between long-term strength and uniaxial compressive strength, indicating that the crack initiation stress and the crack damage stress measured were correct.

Studies on Physical Characterization of Gyeongju Namsan Granite after Treated with Consolidants (경주 남산화강암에 대한 강화제 처리 전후의 물리적 특성변화 연구)

  • Kim, Sung-Ho;Won, Jong-Ok;Kang, Young-Soo;Jang, Yun-Deuk;Kim, Sa-Dug;Kim, Jeong-Jin
    • Journal of Conservation Science
    • /
    • v.25 no.3
    • /
    • pp.245-256
    • /
    • 2009
  • Stereo-Microscope observation, ultrasonic velocity, shore hardness and standard color measurement performed for studies of physical characterization of Namsan granite after treated with consolidants. The consolidants used in experiment are 35wt% Silicate Nonparticle/100%1T1G (Nonparticle), 3%POSS-SO1455/97%1T1G(3%POSS1455), POSS-SO1458/97%1T1G (3%POSS1458), 3%7nm/97%1T1G(3%7nm), 3%16nm/97%1T1G(3%16nm), 3% 40nm/97%1T1G(3%40nm) develop with Sejong university, and Wacker Silres BS OH-100, Unil Sandsteinfestiger OH-100. The color of rock surface is darker than original one but similar to original samples with time, and ultrasonic velocity and shore hardness increased with after consolidant treatment.

  • PDF

Deterioration Diagnosis and Conservation Treatment of the Jincheon Sagongnimaaeyeoraeipsang (Stone Relief of Standing Buddha in Sagok-ri), Korea (진천 사곡리 마애여래입상의 훼손도 진단과 보존처리)

  • Kim, Sa-Dug;Lee, Myeong-Seong;Han, Byeong-Il;Lee, Jang-Jon;Song, Chi-Young
    • Journal of Conservation Science
    • /
    • v.25 no.3
    • /
    • pp.323-333
    • /
    • 2009
  • The Jincheonsagongnimaaeyeoraeipsang is a great stone relief Buddha in Goryeo Dynasty, transmitting sculptural styles of the Silla Kingdom. The Buddha was carved on the biotite granite basement, and was undergone cleaning treatment in 2007. The basement rock was opened in plenty cracks bringing out structural instability. And the top of the basement rock was colonized by trees obstructing sunshine and raising humidity. As a result of failure analysis, the basement rock of the Buddha had a major possibility of wedge failure in the parts of the face, hands and cloths. Therefore, the cracks were filled up with epoxy resin L-50, and titanium bars and wire ropes were applied to bind cracked rock blocks. The surface of the crack filler was colored by granite and talc powder with inorganic pigment and L-30. The crack meters were installed on the stone relief Buddha to monitor further behavior, lastly.

  • PDF

A Report on Gneiss Dome in the Hongseong Area, Southwestern Margin of the Gyeonggi Massif (경기육괴 남서 연변부 홍성지역에 발달하는 편마암 돔에 대한 보고)

  • Park, Seung-Ik;Kim, Sung Won
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.315-323
    • /
    • 2016
  • This study reports a gneiss dome in the Hongseong area, southwestern margin of the Gyeonggi massif. This gneiss dome, named here as 'Oseosan dome' because it is located around the Oseosan, the highest peak along the western coastal area, is composed mainly of the Neoproterozoic to Paleozoic ortho- and paragneiss, mafic metavolcanic rock, and metadolerite. Migmatization affected these rock units, in which leucocratic(granitic) materials derived from anatexis frequently occur as patch and vein parallel to or cutting through internal foliation. The Oseosan dome shows overall concentric geometry and outward-dipping internal foliation, but also partly complicatedly changeable or inward-dipping foliation. Taking available petrological and geochronological data into account, the Oseosan dome is interpreted to be exhumed quickly into the upper crustal level during the Late Triassic, accompanied in part with anatexis and granite intrusion. In addition, extensional shear zone intruded by the Late Triassic synkinematic granite and sedimentary basin have been reported around the Oseosan dome. These evidences possibly suggest that the Oseosan dome formed in closely associated with the Late Triassic extensional movement and diapiric flow. Alternatively, 1) thrust- or reverse fault-related doming or 2) interference between independent folds during structural inversion of the Late Traissic to Middle Jurassic sedimentary basin can be also considered as dome-forming process. However, considering the northern limb of the Oseosan dome, cutting by the Late Traissic granite, and the southern limb, cutting by contractional fault reactivated after the Middle Jurassic, it is likely that the domal structure formed during or prior to the Late Triassic.

Ground Characterization of the Cheongju Granite Area Using the Geophysical Methods (물리탐사를 이용한 청주 화강암 지역의 지반특성 파악)

  • Kim Ji-Soo;Han Soo-Hyung;Seo Yong-Seok;Lee Yong-Jae
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.41-55
    • /
    • 2005
  • This research is aimed at investigating the ground characterization of the Cheongju granite area using the geophysical methods. Test site was chosen from the building site in Chungbuk University, Chongju, Chungbuk province. Furthermore, geophysical methods are employed on the outcrops in the east to map the distribution of fault and intrusion and reveal the degree of weathering. The subsurface structure mapped from seismic re-fraction survey mainly consists of two units of weathered soil and rock. Threshold of the units were determined on the basis of seismic velocity of 800 m/s, supported from the standard classification table. From the results of standard penetrating test(SPT), these units are found to show medium-high and high density, respectively. Weathering soil is subdivided in unsaturated layer and saturated layer with thresholds of seismic velocity (500 m/s) and resistivity (200 ohm-m). In particular, unsaturated layer is again classified into dry and wet portions using the GPR section. The boundary between unsaturated and saturated weathering soils corresponds to the groundwater table at depth of approximately 5~6.2 m, which is well correlated with the one from drill-core data. However, bedrock is not delineated by geophysical methods. In the GPR section, fault and intrusion observed on the outcrop are revealed not to extend to the building site. With respect to weathering degree, the outcrop characterized by low resistivity and velocity corresponds to the grade of 'completely weathered' from the geotechnical investigations.

Experimental Study on the Deformation and Failure Behavior of Tono Granite (토노(Tono) 화강암의 변형 및 파괴거동에 관한 실험적 연구)

  • Choi, Jung-Hae;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.173-183
    • /
    • 2012
  • The nature of surface deformation of Tono granite was investigated using a confocal laser scanning microscope (CLSM) under water-saturated stress relaxation conditions. A new apparatus was developed for this experiment, enabling continuous measurements of stress-strain and simultaneous observations of surface deformation by CLSM. The amounts of grain contact deformation and intra-granular surface deformation were calculated using a finite element method. The results reveal that intense grain contact deformation and intra-granular surface deformation occurred during the period of stress relaxation, and that the intensity of this deformation increased with increasing applied stress. Finite element method (FEM) results show that the strain of grain boundary was greater than strain of inter-granular surface. Contour maps of these local strains were compiled for individual grains and their boundaries, revealing intense deformation at the boundaries between biotite and quartz under compressional stress. This result was a consequence of the mechano-chemical effect of biotite and quartz minerals. Biotite in granite has a layered structure of iron-magnesium-aluminum silicate sheets that are weakly bonded together by layers of potassium ions. In contrast, quartz occurs as stable spherical grains.

A Study on the Consistency Measurement of Weathered Granite Soil (화강암질풍화토(花崗岩質風化土)의 Consistency 측정(測定)에 관한 연구(硏究))

  • Kang, Yea Mook;Cho, Seung Seup;Hong, Soon Pil
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.2
    • /
    • pp.109-118
    • /
    • 1980
  • This test was carried out to present criterion to measure the liquid limit of weathered granite soil by using the flow-table method whose operation is easier and more convenient than slump test. The results are as follows. 1. Since liquid limit of weathered granite soil depends upon the particle size distribution, weatheredness and content of colored minerals, maximum particle size should be prescribed when the testing rule of liquid limit by flow-table method is enacted. 2. If take the averaged water content as liquid limit where the height and width of flow are 1 cm respectively by 10 times dropping, this liquid limit is slightly less than the one by slump test. The differance of liquid limit between flow table method and slump test is about 10%. 3. Correlation curves of flow width-water content and flow hight-water content show similar shapes. Those are straight lines in semi-logarithm paper just as liquid limit test. 4. This flow-table method is more convenient and has less personal error of measurement than slump test does. So flow-table method would be favourably utilized for judging the engineering properties of soil.

  • PDF

Study on Electrical Resistivity Pattern of Soil Moisture Content with Model Experiments (토양의 함수율에 따른 전기비저항 반응 모형 실험 연구)

  • Ji, Yoonsoo;Oh, Seokhoon;Lee, Heui Soon
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.2
    • /
    • pp.79-90
    • /
    • 2013
  • Geophysical investigation in non-destructive testing is economically less expensive than boring testing and providing geotechnical information over wide-area. But, it provides only limited geotechnical information, which is hardly used to the design. Accordingly, we performed electrical resistivity experiments on large scale of soil model to analyze the correlation between electrical resistivity response and soil water contents. The soils used in the experiments were the Jumunjin standard sand and weathered granite soil. Each soil particle size distribution and coefficient of uniformity of experimental material obtained in the experiments were maintained in a state of the homogeneous. The specifications of the model used in this study is $160{\times}100{\times}50$(cm) of acrylic, and each soil was maintained at the height 30 cm. The water content were measured using the 5TE sensors (water contents sensors) which is installed 7 ~ 8 cm apart vertically by plugging to floor. The results of the resistivity behavior pattern for Jumunjin standard sand was found to be sensitive to the water content, while the weathered granite soil was showing lower resistivity over the time, and there was no significant change in behavior pattern observed. So, it results that the Jumunjin standard sand's particle current conduction was better than the weathered granite soil's particle through contact with the distilled water. This lab test was also compared with the result of a test bed site composed of similar weathered soil. It was confirmed that these experiments were underlying research of non-destructive investigation techniques to improve the accuracy to estimate the geotechnical parameter.

Evaluation of Heavy Metal Contents in the Floras Derived from Granite and Coal Bearing Shale Areas in Keumsan (금산의 화강암 및 함탄질 셰일 지역 토양내 식물체의 중금속 함량 특성)

  • Song Suck-hwan;Kang Young-Rib;Kim Il-Chool
    • Korean Journal of Plant Resources
    • /
    • v.18 no.2
    • /
    • pp.251-259
    • /
    • 2005
  • Three different floras(M. sinsinsis, A. vulgaris, Robinia pseudo-acacia) were collected from the granite(GR) and coal bearing shale area(CB) and analysed for their heavy metal elements with the representative soils. Regardless of the flora species, the CB were high in average contents. Among the correlation relationships, the CB were more distinctive than the GR, and the A. vulgaris showed higher correlations than the M. sinsinsis. In the same soils, the A. vutgaris showed high contents than the M. sinsinsis and Robinia pseudo-acacia, and the M. sinsinsis were high relative to the Robinia pseudo-acacia. In the comparisons of the flora, root parts were high in most of the elements except for Zn. In the soils, the CB were high in most of elements while As and Mo showed different contents between the GR and CB. In the comparison between soil and flora, soils of the GR were high in the V and Sc contents and low in Zn and Cu, while those of the CR were high in the Cr, V and Sc contents, and low in the Zn contents, Comparing with the soil contents, the M, sinsinsis in the GR were similar to Co and V contents while, in the CB, the M. sinsinsis were similar to the Ni, Cr, Co, Zn, Mo contents, and the Robinia pseudo-acacia were similar to the Ni, Zn, Cu contents. Overall results suggested that the M. sinsinsis and A. vulgaris should be eligible for the bioremediation of the soils polluted by heavy metal such as the CB.

Properties of Disconitinuity for the Seoul Granite in the Northeastern Part of Seoul City (서울시 북동부의 서울화강암에 대한 불연속면의 특성)

  • 정상원;정상용
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.167-178
    • /
    • 2002
  • Properties of discontinuity for Seoul Granite in northeastern part of Seoul City were analyzed by dividing structural domains into Surak and Bulam Mtn. areas. Important parameters measured among several engineering properties of a rock during tunnel excavation and road construction are as follows: 1) Orientation of joint, 2) joint spacing, 3) joint density, and 4) uniaxial compressive strength. Orientation, spacing, and density of joints can be directly measured during field investigation using scanline survey, circle-inventory method, and window survey. Uniaxial compressive strength of the rock was calculated by a simple correlation equation although it is originally necessary to prepare core samples in measuring it. Major orientations of joints measured from both areas are 3 sets of joints with different orientations. In other words, they are 2 sets of orthogonal joint and 1 set of sheet joint that is dipping at low angle, and have very similar orientations in both areas. Joint densities in both areas range from 0.039 and 0.066/cm, and average joint length are between 1.30 and 4.52m. Average joint spacing also has values from 10.3cm up to 59.6cm, and shows significant difference along specific orientation of scanlines measured. Values of uniaxial compressive strength calculated on the basis of Schmidt hammer rebound values range from 217 to 335 MPa, which indicates very strong rock type by classification of wall strength.