DOI QR코드

DOI QR Code

A Report on Gneiss Dome in the Hongseong Area, Southwestern Margin of the Gyeonggi Massif

경기육괴 남서 연변부 홍성지역에 발달하는 편마암 돔에 대한 보고

  • 박승익 (한국지질자원연구원 국토지질연구본부) ;
  • 김성원 (한국지질자원연구원 국토지질연구본부)
  • Received : 2016.08.10
  • Accepted : 2016.08.31
  • Published : 2016.08.28

Abstract

This study reports a gneiss dome in the Hongseong area, southwestern margin of the Gyeonggi massif. This gneiss dome, named here as 'Oseosan dome' because it is located around the Oseosan, the highest peak along the western coastal area, is composed mainly of the Neoproterozoic to Paleozoic ortho- and paragneiss, mafic metavolcanic rock, and metadolerite. Migmatization affected these rock units, in which leucocratic(granitic) materials derived from anatexis frequently occur as patch and vein parallel to or cutting through internal foliation. The Oseosan dome shows overall concentric geometry and outward-dipping internal foliation, but also partly complicatedly changeable or inward-dipping foliation. Taking available petrological and geochronological data into account, the Oseosan dome is interpreted to be exhumed quickly into the upper crustal level during the Late Triassic, accompanied in part with anatexis and granite intrusion. In addition, extensional shear zone intruded by the Late Triassic synkinematic granite and sedimentary basin have been reported around the Oseosan dome. These evidences possibly suggest that the Oseosan dome formed in closely associated with the Late Triassic extensional movement and diapiric flow. Alternatively, 1) thrust- or reverse fault-related doming or 2) interference between independent folds during structural inversion of the Late Traissic to Middle Jurassic sedimentary basin can be also considered as dome-forming process. However, considering the northern limb of the Oseosan dome, cutting by the Late Traissic granite, and the southern limb, cutting by contractional fault reactivated after the Middle Jurassic, it is likely that the domal structure formed during or prior to the Late Triassic.

본 연구는 경기육괴 남서 연변부 홍성지역에 발달하는 편마암 내 돔 구조를 보고한다. 서해안 제1봉 오서산 주변으로 발달하여 오서산 돔으로 명명된 이 편마암 돔은 주로 신원생대-고생대의 정편마암 및 준편마암, 변성염기성화산암, 변성조립현무암으로 주로 구성된다. 이들 암석들은 혼성암화작용을 경험하였으며, 내부에는 부분용융에 의해 형성된 우백질(화강암질) 물질이 엽리면을 절단하거나 이에 평행한 패치 혹은 광맥의 형태로 빈번하게 관입되어있다. 오서산 돔은 전체적으로 동심 구조 및 외부를 향하는 내부 엽리를 보이나, 일부 영역에 발달하는 엽리는 복잡한 방향 변화를 보이거나 내부를 향하는 형태를 보이기도 한다. 그간 오서산 돔 내부에서 보고된 암석학적, 연대학적 정보들을 종합해보면, 오서산 돔은 후기 트라이아스기에 빠르게 상부지각으로 융기하였으며 이와 유사한 시기에 일부 부분용융작용 및 화강암의 관입을 경험하였다. 더불어 주변으로는 후기 트라이아스기의 운동동시성 화강암에 의해 관입되어 있는 확장성 전단대 및 퇴적분지 발달이 보고된 바 있다. 이러한 양상은 오서산 돔이 후기 트라이아스기 확장성 운동 및 이에 수반된 다이어퍼 상승흐름과 연관되어 형성되었을 가능성을 지시할 수 있다. 또 다른 시각에서 편마암 내 돔 구조의 발달이 후기 트라이아스기~중기 쥬라기 퇴적분지의 구조역전 과정에서 1) 충상단층 내지는 역단층에 수반되었거나, 2) 독립적인 습곡들의 상호 간섭에 의해 야기되었을 가능성 역시 배재할 수는 없다. 하지만 돔의 북측 날개부가 후기 트라이아스기 화강암에 의해 절단되어 있는 양상이나 남측 날개부가 압축변형 과정에서 재활성된 단층에 의해 절단되어 있는 양상을 미루어 보았을 때, 편마암 내 돔 구조의 발달 시기는 후기 트라이아스기 혹은 그 이전일 가능성이 높다.

Keywords

References

  1. Andersen, T.B. (1998) Extensional tectonics in the Caledonides of southern Norway, an overview. Tectonophysics, v.285, p.333-351. https://doi.org/10.1016/S0040-1951(97)00277-1
  2. Armstrong, R.L., Parrish, R.R., van der Heyden, P., Scott, K., Runkle, D. and Brown, R.L. (1991) Early Proterozoic basement exposures in the southern Canadian Cordillera; core gneiss of Frenchman Cap, Unit I of the Grand Forks Gneiss, and the Vaseaux Formation. Canadian Journal of Earth Science, v.28, p.1169-1201. https://doi.org/10.1139/e91-107
  3. Axen, G.J., Bartley, J.M. and Selverstone, J. (1995) Structural expression of a rolling hinge in the footwall of the Brenner Line normal fault, eastern Alps. Tectonics, v.14, p.1380-1392. https://doi.org/10.1029/95TC02406
  4. Borradaile, G.J. and Gauthier, D. (2003) Emplacement of an Archean gneiss dome, northern Ontario, Canada: Inflation inferred from magnetic fabric. Tectonics, v.22, no. 6, 1011, doi: 10.1029/2002TC001443.
  5. Choi, H.I., Kim, D.S. and Seo, H.G. (1987) Stratigraphy, Depositional Environment and Basin Evolution of the Daedong Strata in the Chungnam Coalfield: KR-87-(B)-3. Korea Institute of Energy and Resources, 97p (in Korean with English abstract).
  6. Cluzel, D. (1992) Formation and tectonic evolution of early Mesozoic intramontane basin in the Ogcheon belt (South Korea): a reappraisal of the Jurassic "Daebo orogeny". Journal of Southeast Asian Earth Sciences, v.7, p.223-235. https://doi.org/10.1016/0743-9547(92)90002-S
  7. Coney, P.J. (1980) Cordilleran metamorphic core complexes: An overview. Geological Society of America Memoirs, v.153, p.7-31. https://doi.org/10.1130/MEM153-p7
  8. de Jong, K., Han, S. and Ruffet, G. (2015) Fast cooling following a Late Triassic metamorphic and magmatic pulse: implications for the tectonic evolution of the Korean collision belt. Tectonophysics, v.662, p.271-290. https://doi.org/10.1016/j.tecto.2015.06.016
  9. Dietsch, C. (1989) The Waterbury dome, west-central Connecticut. A triple window exposing deeply deformed, multiple tectonic units. American Journal of Science, v.289, p.1070-1097. https://doi.org/10.2475/ajs.289.9.1070
  10. Eskola, P.E. (1949) The problem of mantled gneiss dome. Quarterly Journal of the Geological Society of London, v.104, 461-476.
  11. Faure, M., Lin, W., Monie, P., Le Breton, N., Poussineau, S., Panis, D. and Deloule, E. (2003) Exhumation tectonics of the ultrahigh-pressure metamorphic rocks in th Qinling orogen in east China: New petrological-structural-radiometric insights from the Shandong Peninsula. Tectonics, v.22, NO. 3, 1018, doi:10.1029/2002TC001450.
  12. Faure, M., Lin, W. and Sun, Y. (1998) Doming in the southern foreland of the Dabieshan (Yangtse Block, China). Terra Nova, v.10, p.307-311. https://doi.org/10.1046/j.1365-3121.1998.00207.x
  13. Fayon, A.K., Whitney, D.L. and Teyssier, C. (2004) Exhumation of orogenic crust: Diapiric ascent versus lowangle normal faulting. In: Whitney, D.L., Teyssier, C. and Siddoway, C.S. (ed.) Gneiss domes in orogeny. Geological Society of America Special Paper, v.380, p.129-139.
  14. Fletcher, R.C. (1972) Application of a mathematical model to the emplacement of mantled gneiss domes. American Journal of Science, v.272, p.197-216. https://doi.org/10.2475/ajs.272.3.197
  15. Fletcher, R.C. (1995) 3-dimensional folding and necking of a power-law layer: Are folds cylindrical, and if so, do we understand why? Tectonophysics, v.247, p.65-83. https://doi.org/10.1016/0040-1951(95)00021-E
  16. Fowler, T.J. and Osman, A.F. (2001) Gneiss-cored interference dome associated with two phjases of late Pan-African thrusting in the Central Eastern Desert, Egypt. Precambrian Research, v.108, p.17-34. https://doi.org/10.1016/S0301-9268(00)00146-7
  17. Harris, L.B., Koyi, H.A. and Fossen, H. (2002) Mechanisms for folding of high-grade rocks in extensional tectonic settings. Earth-Science Review, v.59, p.163-210. https://doi.org/10.1016/S0012-8252(02)00074-0
  18. Holm, D.K. and Lux, D.R. (1996) Core complex model proposed for gneiss dome development during collapse of the Paleoproterozoic Penokean orogen, Minnesota. Geology, v.24, p.343-346. https://doi.org/10.1130/0091-7613(1996)024<0343:CCMPFG>2.3.CO;2
  19. Horton, F., Lee, J., Hacker, B., Bowman-Kamaha'o, M. and Cosca, M. (2014) Himalayan gneiss dome formation in the middle crust and exhumation by normal faulting: New geochronology of Gianbul dome, northwestern India. Geological Society of America Bulletin, v.127, p.162-180.
  20. Kihm, Y.H. (2012) Geology and geological structure around the Gonam-myeon, Anmyeon-do. In: Choi, S.-J. (ed.) Tectonic evolution of the western Gyeonggi Block and construction of geologic DB system: GP2011-004-2012(1). Korea Institute of Geoscience and Mineral Resources, 134-153 (in Korean).
  21. Kim, J.-N., Ree, J.-H, Kwon, S.-T., Park, Y., Choi, S.-J. and Cheong, C.-S. (2000) The Kyonggi Shear Zone of the Central Koran Peninsula: Late Orogenic Imprint of the North and South China Collision. The Journal of Geology, v.108, p.469-478. https://doi.org/10.1086/314412
  22. Kim, S.W., Kee, W.-S., Lee, S.R., Santosh, M. and Kwon, S. (2013) Neoproterozoic plutonic rocks from the western Gyeonggi massif, South Korea: implications for the amalgamation and break-up of the Rodinia supercontinent. Precambrian Research, v.227, p.349-367. https://doi.org/10.1016/j.precamres.2012.01.014
  23. Kim, S.W., Kwon, S., Park, S.-I., Yi, K., Santosh, M. and Kim, H.S. (2016) Early to Middle Paleozoic tectonometamorphic evolution of the Hongseong area, central western Korean Peninsula: Tectonic implications. Gondwana Research, doi: 10.1016/j.gr.2016.05.016.
  24. Kim, S.W., Kwon, S., Park, S.-I., Yi, K., Santosh, M. and Ryu, I.-C. (2015) Early to Middle Paleozoic arc magmatism in the Korean Peninsula: Constraints from zircon geochronology and geochemistry. Journal of Asian Earth Sciences, v.113, p.866-882. https://doi.org/10.1016/j.jseaes.2015.09.017
  25. Kim, S.W., Oh, C.W., Williams, I.S., Rubatto, D. and Ryu, I.C. (2006) Phanerozoic high-pressure eclogite and intermediate-pressure granulite facies metamorphism in the Gyeonggi Massif, south Korea: implications for the eastward extension of the Dabie-Sulu continental collision zone. Lithos, v.92, p.357-377. https://doi.org/10.1016/j.lithos.2006.03.050
  26. Kim, S.W, Park, S.-I., Ko, K., Lee, H.-J., Koh, H.J., Kihm, Y.H. and Lee, S.R. (2014a) 1:100,000 Tectonostratigraphic map of the Hongseong area, map 1 : solid geology interpretation. Korea Institute of Geoscience and Mineral Resources.
  27. Kim, S.W, Park, S.-I., Ko, K., Lee, H.-J., Koh, H.J., Kihm, Y.H. and Lee, S.R. (2014b) 1:100,000 Tectonostratigraphic map of the Hongseong area, map 2 : summary of geochronological and geochemical data. Korea Institute of Geoscience and Mineral Resources.
  28. Kim, S.W., Santosh, M., Park, N. and Kwon, S. (2011) Forearc serpentinite melange from the Hongseong suture, South Korea. Gondwana Research, v.20, p.852-864. https://doi.org/10.1016/j.gr.2011.01.012
  29. Kim, S.W., Williams, I.S., Kwon, S. and Oh, C.W. (2008) SHRIMP zircon geochronology and geochemical characteristics of metaplutonic rocks from the south-western Gyeonggi Block, Korea: implications for Paleoproterozoic to Mesozoic tectonic links between the Korean Peninsula and eastern China. Precambrian Research, v.162, p.475-497. https://doi.org/10.1016/j.precamres.2007.10.006
  30. Kündig, R. (1989) Domal structures and high-grade metamorphism in the Higher Himalayan Crystalline, Zanskar region, northwest Himalaya, India. Journal of Metamorphic Geology, v.7, p.43-55. https://doi.org/10.1111/j.1525-1314.1989.tb00574.x
  31. Kwon, S., Kim, S.W. and Snatosh, M. (2013) Multiple generation of mafic-ultramafic rocks from the Hongseong suture zone, western South Korea: implications for the geodynamic evolution of NE Asia. Lithos, v.160-161, p.68-83.
  32. Lee, J., Hacker, B., and Wang, Y. (2004) Evolution of North Himalayan gneiss domes: structural and metamorphic studies in Mobja Dome, southern Tibet. Journal of Structural Geology, v.26, p.2297-2316. https://doi.org/10.1016/j.jsg.2004.02.013
  33. Lim, C. and Cho, M. (2012) Two-phase contractional deformation of the jurassic Daebo Orogeny, Chungnam Basin, Korea, and its correlation with the early Yanshanian movement of China. Tectonics, v.31, TC1004, doi:10.1029/2011TC002909.
  34. Lister, G.S. and Davis, G.A. (1989) The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, USA. Journal of Structural Geology, v.11, p.65-94. https://doi.org/10.1016/0191-8141(89)90036-9
  35. Makovsky, Y., Klemperer, S.L., Ratschbacher, L. and Alsdorf, D. (1999) Midcrustal reflector on INDEPTH wide-angle profiles: An ophiolitic slab beneath the India-Asia suture in southern Tibet? Tectonics, v.18, p.793-808. https://doi.org/10.1029/1999TC900022
  36. Oh, C.W., Choi, S.G., Song, S.H. and Kim, S.W. (2004) Metamorphic Evolution of the Baekdong Metabasite in the Hongseong Area, South Korea and its Relationship with the Sulu Collision Belt of China. Gondwana Research, v.7, p.809-816. https://doi.org/10.1016/S1342-937X(05)71065-0
  37. Oh, C.W., Imayama, T., Yi, S.-B., Kim, T., Ryu, I.-C., Jeon, J. and Yi, K. (2014) Middle Paleozoic metamorphism in the Hongseong area, South Korea, and tectonic significance for Paleozoic orogeny in northeast Asia. Journal of Asian Earth Sciences, v.95, p.203-216. https://doi.org/10.1016/j.jseaes.2014.08.011
  38. Oh, C.W., Kim, S.W., Choi, S.G., Zhai, M., Guo, J. and Sajeev, K. (2005) First finding of eclogite facies metamorphic event in South Korea and its correlation with the Dabie-Sulu collision belt in China. The Journal of Geology, v.113, p.226-232. https://doi.org/10.1086/427671
  39. Oh, C.W., Rajesh, V.J., Seo, J., Choi, S.-G. and Lee, J.H. (2010) Spinel compositions and tectonic relevance of the Bibong ultramafic bodies in the Hongseong collision belt, Soith Korea. Lithos, v.117, p.198-208. https://doi.org/10.1016/j.lithos.2010.02.015
  40. Oh, C.W., Seo, J., Choi, S.G., Rajesh, V.J. and Lee, J.H. (2012) U-Pb SHRIMP zircon geochronology, petrogenesis, and tectonic setting of the Neoproterozoic Baekdong ultramafic rocks in the Hongseong Collision Belt, South Korea. Lithos, v.128-131, p.100-112. https://doi.org/10.1016/j.lithos.2011.10.008
  41. Oh, J.-H. and Kim, S.W. (2013) Geochronological and Geochemical Studies for Triassic Plutons from the Wolhyeonri Complex in the Hongseong Area, Korea. Economic and Environmental Geology, v.46, p.391-409 (in Korean with English abstract). https://doi.org/10.9719/EEG.2013.46.5.391
  42. Park, S.-I., Kim, S.W., Kwon, S., Thanh, N.X., Yi, K. and Santosh, M. (2014a) Paleozoic tectonics of the southwestern Gyeonggi massif, South Korea: Insights from geochemistry, chromian-spinel chemistry and SHRIMP U-Pb geochemistry. Gondwana Research, v.26, p.684-698. https://doi.org/10.1016/j.gr.2013.07.015
  43. Park, S.-I., Kwon, S., Kim, S.W., Yi, K. and Santosh, M. (2014b) Continental origin of the Bibong eclogite, southwestern Gyeonggi massif, South Korea. Journal of Asian Earth Sciences, v.95, p.192-202. https://doi.org/10.1016/j.jseaes.2014.08.024
  44. Park, S.-I. and Noh, J. (2015) Jangsan fault: Evidence of structural inversion of the Chungnam Basin. Journal of the Geological Society of Korea, v.51, p.451-469 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2015.51.5.451
  45. Passchier, C.W., Zhang, J.S. and Konopasek, J. (2005) Geometric aspects of synkinematic granite intrusion into a ductile shear zone-an example from the Yunmengshan core complex, northern China. In: Bruhn, D. and Burlini, L. (ed.) High-Strain Zones: Structure and Physical Properties. Geological Society of London Special Publication, v.245, p.65-80.
  46. Pecher, A. and Le Fort, P. (1999) Late Miocene tectonic evolution of the Karakoram-Nanga Parbat contact zone (northern Pakistan), In: Macfarlane, A., Sorkhabi, R.B. and Quade, J. (ed.) Himalaya and Tibet: Mountain roots to mountain tops. Geological Society of America Special Paper, v.328, p.145-158.
  47. Ramsay, J.G. (1967) Folding and fracturing of rocks. New York, McGraw-Hill, 568p.
  48. Robyr, M., Vannay, J.C., Epard, J.L. and Steck, A. (2002) Thrusting, extension, and doming during the polyphase tectonometamorphic evolution of theHimalayan Crystalline zone in NW India. Journal of Asian Earth Sciences, v.21, p.221-239. https://doi.org/10.1016/S1367-9120(02)00039-1
  49. Seo, J., Choi, S.G., Oh, C.W., Kim, S.W. and Song, S.H. (2005) Genetic Implications of Two Different Ultramafic Rocks from Hongseong Area in the Southwestern Gyeonggi Massif, South Korea. Gondwana Research, v.8, p.539-552. https://doi.org/10.1016/S1342-937X(05)71154-0
  50. Seo, J., Oh, C.W., Choi, S.G. and Rajesh, V.J. (2013) Two ultramafic rock types in the Hongseong area, South Korea: Tectonic significance for northeast Asia. Lithos, v.175-176, p.30-39. https://doi.org/10.1016/j.lithos.2013.04.014
  51. Spencer, J.E. (2000) Possible origin and significance of extension-parallel drainages in Arizona's metamorphic core complexes. Geological society of America Bulletin, v.112, p.727-735. https://doi.org/10.1130/0016-7606(2000)112<727:POASOE>2.0.CO;2
  52. Teyssier, C. and Whitney, D.L. (2002) Gneiss domes and orogeny. Geology, v.30, p.1139-1142. https://doi.org/10.1130/0091-7613(2002)030<1139:GDAO>2.0.CO;2
  53. Vanderhaeghe, O., Teyssier, C. and Wysoczanski, R. (1999) Structural and geochronological constraints on the role of partial melting during the formation of the Shuswap metamorphic core complex at the latitude of the Thor-Odin dome, British Columbia. Canadian Journal of Earth Sciences, v.36. p.917-943. https://doi.org/10.1139/e99-023
  54. Whitney, D.L., Teyssier, C. and Vanderhaeghe, O (2004) Gneiss domes and crustal flow. In: Whitney, D.L., Teyssier, C. and Siddoway, C.S. (ed.) Gneiss domes in orogeny. Geological Society of America Special Paper, v.380, p.15-33.
  55. Yin, A. (1991) Mechanisms for the formation of domal and basinal detachment faults-A 3-dimensional analysis. Journal of Geophysical Research, v.96, p.14577-14594. https://doi.org/10.1029/91JB01113