• Title/Summary/Keyword: Korean geophysics

Search Result 1,236, Processing Time 0.024 seconds

Atmospheric Pollutant Concentrations under the Influences of Internal Gravity Wave and Sea-Land Breeze Circulations in the Mountainous Coastal Regions (산악연안지역에서 내부중력파와 해륙풍순환 영향하의 대기오염농도)

  • Hyo Choi;Joon Choi
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.23 no.1
    • /
    • pp.18-33
    • /
    • 1995
  • Under the synoptic scale strong westerly winds flowing over the large steep mountains in the eastern coastal region, the strong downslope wind storms such as internal gravity waves should be generated in the lee-side of mountain. Int he daytime as sea breeze circulation induced by meso-scale thermal forcing from sea toward inland confines to the offshore side of coastal sites due to the eastward internal gravity waves. Thus, surface winds near the coastal seas were relatively weaker than those in the open sea or the inland sites. Evidently, two different kinds of atmospheric circulations such as an internal gravity wave circulation with westerly wind and a sea breeze circulation with both easterly wind near the sea surface and westerly in the upper level were apparently produced. Under this situation the atmospheric pollutants at Kangnung city should be trapped by two different circulations in the opposite directions and resulted in the high concentrations of Total Suspended Particles (TSP) and ozone (O3). At night a meso-scale land breeze from land toward the more intensification of westerly winds in the coastal regions. The concentrations of TSP controled by the strong surface winds blowing from the mountain side toward the coastal sea were relatively higher at night than those in the daytime case and the concentrations of O3 due to the downward transport of ozone from the upper atmosphere toward the surface were also much higher at night than during the day. Consequently, the atmospheric pollutant concentrations in the mountainous coastal region under the downslope wind storms were higher than those after and before the occurrences of wind storms.

  • PDF

Recovery of Lithospheric Magnetic Component in the Satellite Magnetometer Observations of East Asia (인공위성 자력계에서 관측된 동아시아 암권의 지자기이상)

  • Kim, Jeong-Woo
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.157-168
    • /
    • 2002
  • Improved procedures were implemented in the production of the lithospheric magnetic anomaly map from Magsat satellite magnetometer data of East Asia between $90^{\circ}E-150^{\circ}E$ and $10^{\circ}S-50^{\circ}N$. Procedures included more effective selection of the do·it and dawn tracks, ring current correction, and separation of core field and external field effects. External field reductions included an ionospheric correction and pass-by-pass correlation analysis. Track-line noise effects were reduced by spectral reconstruction of the dusk and dawn data sets. The total field magnetic anomalies were differentially-reduced-to-the-pole to minimize distortion s between satellite magnetic anomalies and their geological sources caused by corefield variations over the study area. Aeromagnetic anomalies were correlated with Magsat magnetic anomalies at the satellite altitude to test the lithospheric veracity of anomalies in these two data sets. The aeromagnetic anomalies were low-pass filtered to eliminate high frequency components that may not be shown at the satellite altitude. Although the two maps have a low CC of 0.243, there are many features that are directly correlated (peak-to-peak and trough-to-trough). The low CC between the two maps was generated by the combination of directly- and inversely-correlative anomaly features between them. It is very difficult to discriminate directly, inversely, and nully correlative features in these two anomaly maps because features are complicatedly correlated due to the depth and superposition of the anomaly sources. In general, the lithospheric magnetic components were recovered successfully from satellite magnetometer observations and correlated well with aeromagnetic anomalies in the study area.

Application of Magnetic Methods for finding the Egyptian archaeological features

  • Abdallatif Tareq Fahmy;Suh Mancheol;El-All Esmat Abd
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.157-179
    • /
    • 2004
  • The application of magnetic method for archaeoprospection has been carried out through two archaeological areas in Egypt, Abydos and Abu Sir, In order to find out tile ancient Egyptian archaeological features. The magnetic work at the selected archaeological site of Abydos area was carried out by gradiometer survey, while magnetic work at the selected archaeological site of Abu Sir area was carried out by gradiometer survey and magnetic susceptibility measurements. A gradiometer survey with raster of 0.5 m/0.5 m has been carried out on a surface area of $9600 m^2$ at Abydos area to relocate the buried Solar Boats. The magnetic data were processed using Geoplot software to treat the field noises and enhance the quality of the obtained images. The final magnetic images indicate the existence of 12 Solar Boats as well as tombs, remains of ancient rooms and walls. All of them are expected to belong to the Middle Kingdom, particularly from the 18th to 20th Dynasties. Two magnetic tools have been applied over a selected site of $25600 m^2$ at Abu Sir area in order to detect the hidden archaeological features nearby the Sun Temple. The acquisition of the magnetic data was initiated by the measurements of the topsoil magnetic susceptibility of 272 samples collected from the whole studied area, and then followed by the gradiometer survey to measure tile vertical gradient of the geomagnetic field over an area of $14400 m^2$. The magnetic susceptibility results show the presence of high concentration at the middle part of the study area with a little extension to the south western side, with maximum value of about $36{\times}10^5$ SI. They may indicate the proximity of ritual monuments. Also, they offered the site of interest for carrying out a gradiometer survey. The gradiometer results show tile existence of numerous distributed archaeological features made of mud-bricks with different shapes and sizes. They may indicate tombs, burial rooms, dissected walls; all of them are expected to belong to the 5th Dynasty of pharaohs, who used to build their buildings by mud bricks. The depth of the expected buried archaeological features has been estimated from tihe gradiometer. It is around 1.2m for deep features and 0.42 m for shallow features.

  • PDF

Simultaneous tomographic inversion of surface and borehole seismic traveltime data in the Pungam basin (풍암분지 시험시추공 주변에서의 지표 및 시추공 초동주시 토모그래피 동시역산)

  • Hong, Myung-Ho;Kim, Ki-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.125-130
    • /
    • 2006
  • Both surface seismic and far-offset VSP data were recorded alongtwo mutually perpendicular profiles in the Pungam basin. The first-arrival times were simultaneously inverted using the tomography method. For the surface data, seismic energy was generated by a 5-kg sledgehammer at 48 stations and detected by 21 surface geophones at 3 m intervals and one 3-component geophone in test borehole for the purpose of static corrections. For the VSP data, seismic waves generated by the sledgehammer on the ground were detected by a 3-component borehole geophone in a depth range of $9{\sim}99\;m$. Delay times of the hammer data were corrected using the seisgun data before the inversion to yield velocity tomograms. The tomograms indicates that the soil layer with velocities less than 750 m/s averages 1.8 m thick. The velocity varies from 5353 m/s at the depth range of $31{\sim}40\;m$ to 4262 m/s at the depth range of $65{\sim}73\;m$. Compared with core samples, the relatively large variation in velocity may due to lithology changes and fracture effects with depth.

  • PDF

Risk Analysis for Cut Slope using Probabilistic Index of Landslide (사면파괴 가능성 지수를 이용한 절취사면 위험도 분석)

  • Jang, Hyun-Shic;Oh, Chan-Sung;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.163-176
    • /
    • 2007
  • Landslides which is one of the major natural hazard is defined as a mass movement of weathered material rock and debris due to gravity and can be triggered by complex mechanism. It causes enormous property damages and losses of human lift directly and indirectly. In order to mitigate landslide risk effectively, a new method is required to develope for better understanding of landslide risk based on the damaged cost produce, investment priority data, etc. In this study, we suggest a new evaluation method for slope stability using risk analysis. 30 slopes including 10 stable slopes, 10 slopes of possible failure and 10 failed slopes along the national and local roads are examined. Risk analysis comprises the hazard analysis and the consequence analysis. Risk scores evaluated by risk analysis show very clear boundaries for each category and are the highest for the failed slopes and the lowest for the stable slopes. The evaluation method for slope stability suggested by this research may define the condition and stability of slope more clearly than other methods suggested by others.

Acoustic Emission Property and Damage Estimation of Rock Due to Cyclic Loading (반복하중 시험 시 발생하는 암석의 미소파괴음 특성과 손상도 평가)

  • Jang Hyun-Shic;Ma Yon-Sil;Jang Bo-An
    • The Journal of Engineering Geology
    • /
    • v.16 no.3 s.49
    • /
    • pp.235-244
    • /
    • 2006
  • Granite cores were sampled within Korea Atomic Energy Research Institute and cyclic loadings up to 1550 cycles were applied. Microcrack development in samples due to cyclic loading was estimated using Acoustic Emission(AE) method. AE showed two different types depending on numbers of cycle. Type 1 appeared at low cycles and had low energy and diverse frequencies, while type 2 appeared at high cycles and had high energy and uniform frequency. AE property of type 1 indicates voids and pre-existing microcracks in samples may close or propagate up to certain length. Microcracks may be sheared or closed during loading and are recovered from shear or opened during unloading when AE of type 2 were measured. P wave velocities and Felicity ratios were measured at 50, 150, 350, 750, 1550 cycles. P wave velocities were almost the same regardless of number of cycles applied. However, Felicity ratios were much lower than 0.9, indicating that microcracks were developed within samples. This result indicates that Felicity ratio is a better tool than P wave velocity to estimate the damage of rock.

Geologic Structure Analysis from the Integration of Magnetotelluric and Gravity Models at Hwasan Caldera (화산칼데라 지역 중력 및 자기지전류 탐사 자료의 복합해석을 통한 지질구조 해석)

  • Park, Gye-Soon;Oh, Seok-Hoon;Lee, Heui-Soon;Kim, Jung-Ho;Kwon, Byung-Doo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.21-26
    • /
    • 2008
  • A multi-geophysical surveys were carried out at Hwasan caldera which is located in Euisung Sub-basin. In order to overcome the limitation of the previous studies, dense gravity data and magnetotelluric (MT) data were obtained and integrated. In this study, the independent inversion models from gravity and MT method were integrated using a correlation and classification approaches to map geologic structure. The results of integration analysis indicated followings; 1) pyroclastic rocks around the central area of Hwasan caldera have lower density and resistivity when compared with those of neighborhood regions and are extended to around 1 km in depth, 2) the high resistivity and density intrusive igneous rocks are imaged around the ring fault boundary, and 3) the basement structure, which has low resistivity and high density, 5 km deep inferred by integration analysis. Also, for integration analysis, we suggested Structure Index method. This method is analyzed using Type Angle and Type Intensity, which are calculated by the spatial correlation of the physical properties. In this study, we can perform the integration analysis effectively using Structure Index method.

  • PDF

A Study on Matching Pursuit Interpolation with Moveout Correction (시간차 보정을 적용한 Matching Pursuit 내삽 기법 연구)

  • Lee, Jaekang;Byun, Joongmoo;Seol, Soon Jee;Kim, Young
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.2
    • /
    • pp.103-111
    • /
    • 2018
  • The recent research aim of seismic trace interpolation is to effectively interpolate the data with spatial aliasing. Among various interpolation methods, the Matching Pursuit interpolation, that finds the proper combination of basis functions which can best recover traces, has been developed. However, this method cannot interpolate aliased data. Thus, the multi-component Matching Pursuit interpolation and moveout correction method have been proposed for interpolation of spatially aliased data. It is difficult to apply the multi-component Matching Pursuit interpolation to interpolating the OBC (Ocean Bottom Cable) data which is the multi-component data obtained at the ocean bottom because the isolation of P wave component is required in advance. Thus, in this study, we dealt with an effective single-component matching Pursuit interpolation method in OBC data where P-wave and S-wave are mixed and spatial aliasing is present. To do this, we proposed the Ricker wavelet based single-component Matching Pursuit interpolation workflow with moveoutcorrection and systematically investigated its effectiveness. In this workflow, the spatial aliasing problem is solved by applying constant value moveout correction to the data before the interpolation is performed. After finishing the interpolation, the inverse moveout correction is applied to the interpolated data using the same constant velocity. Through the application of our workflow to the synthetic OBC seismic data, we verified the effectiveness of the proposed workflow. In addition, we showed that the interpolation of field OBC data with severe spatial aliasing was successfully performed using our workflow.

Trace Interpolation using Model-constrained Minimum Weighted Norm Interpolation (모델 제약조건이 적용된 MWNI (Minimum Weighted Norm Interpolation)를 이용한 트레이스 내삽)

  • Choi, Jihyun;Song, Youngseok;Choi, Jihun;Byun, Joongmoo;Seol, Soon Jee;Kim, Kiyoung;Lee, Jeongmo
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.2
    • /
    • pp.78-87
    • /
    • 2017
  • For efficient data processing, trace interpolation and regularization techniques should be antecedently applied to the seismic data which were irregularly sampled with missing traces. Among many interpolation techniques, MWNI (Minimum Weighted Norm Interpolation) technique is one of the most versatile techniques and widely used to regularize seismic data because of easy extension to the high-order module and low computational cost. However, since it is difficult to interpolate spatially aliased data using this technique, model-constrained MWNI was suggested to compensate for this problem. In this paper, conventional MWNI and model-constrained MWNI modules have been developed in order to analyze their performance using synthetic data and validate the applicability to the field data. The result by using model-constrained MWNI was better in spatially aliased data. In order to verify the applicability to the field data, interpolation and regularization were performed for two field data sets, respectively. Firstly, the seismic data acquired in Ulleung Basin gas hydrate field was interpolated. Even though the data has very chaotic feature and complex structure due to the chimney, the developed module showed fairly good interpolation result. Secondly, very irregularly sampled and widely missing seismic data was regularized and the connectivity of events was quite improved. According to these experiments, we can confirm that the developed module can successfully interpolate and regularize the irregularly sampled field data.

Use of Audio-Band on the Interpretation of Magnetotelluric Data (MT 탐사자료의 해석에서 AMT 대역 자료의 효용성)

  • Lee, Tae-Jong;Lee, Seong-Kon;Song, Yoon-Ho;Uchida, Toshihiro
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.261-270
    • /
    • 2006
  • Two-dimensional (2-D) inversion of magnetotelluric (MT) data for two survey lines having south-north direction from Jeju Island has been carried out. Broad band MT sounding curves with good quality could be gathered by performing audio-frequency magnetotelluric (AMT) survey during the MT survey and by operating the remote reference in Kyushu Island, Japan. Comparison of the 2-D inversion model using MT band only and that using both AMT and MT bands for the field data as well as for the data from numerical 2-D modeling said that high frequency information from AMT survey can be useful for interpreting not only the shallow part but also the deep structures, especially when the formation is resistive. The 2-D inversion models of field data show a thick layer having around 10 ohm-m in the depth of a few hundred meters throughout the survey area, which can be considered as the unconsolidated sedimentary layer. And they also show a conductive anomaly at the central part of each survey lines. It can be either the effect of the surrounding sea water, or the structures due to ancient volcanic events. But unfortunately by now, we do not have any further information about the anomaly.