• Title/Summary/Keyword: Korean films

검색결과 15,160건 처리시간 0.04초

Surface properties of Nb oxide thin films prepared by rf sputtering

  • 박주연;강용철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.306.2-306.2
    • /
    • 2016
  • Niobium oxide thin films were synthesized by reactive rf magnetron sputtering. The target was metallic niobium with 2 inch in diameter and the substrate was n-type Si wafer. To control the surface properties of the films, Nb oxide thin films were obtained at various mixing ratios of argon and oxygen gases. Nb oxide thin films were analyzed with alpha step, scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The result of alpha step showed that the thickness of Nb oxide thin films were decreased with increasing the oxygen gas ratios. SEM images showed that the granular morphology was formed at 0% of oxygen gas ratio and then disappeared at 20 and 75% of oxygen gas ratio. The amorphous Nb oxide was observed by XRD at all films. The oxidation state of Nb and O were studied with high resolution Ni 2p and O 1s XPS spectra. And the change in the chemical environment of Nb oxide thin films was investigated by XPS with Ar+ sputtering.

  • PDF

Optoelectrical properties of IGZO/Cu bi-layered films deposited with DC and RF magnetron sputtering

  • joo, Moon hyun;hyun, Oh-jung;Son, Dong-Il;Kim, Daeil
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.178.2-178.2
    • /
    • 2015
  • In and Ga doped ZnO (IGZO) films were deposited on 5 nm thick Cu film buffered Polycarbonate (PC) substrates with RF magnetron sputtering and then the effect of Cu buffer layer on the optical and electrical properties of the films was investigated. While IGZO single layer films show the electrical resistivity of $1.2{\times}10-1{\Omega}cm$, IGZO/Cu bi-layered films show a lower resistivity of $1.6{\times}10-3{\Omega}cm$. Although the optical transmittance of the films in a visible wave length range is deteriorated by Cu buffer layer, IGZO films with 5 nm thick Cu buffer layer show the higher figure of merit of $2.6{\times}10-4{\Omega}-1$ than that of the IGZO single layer films due to the enhanced opto-electrical performance of the IGZO/Cu bi-layered films.

  • PDF

말레에이트계 유기초박막의 가스 반응 특성 분석 (Analysis of Gas Response Characteristics of Maleate Organic Ultra-thin Films)

  • 최용성;김정명;김도균;권영수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권6호
    • /
    • pp.442-450
    • /
    • 1999
  • In this paper, we have fabricated Langmuir-Blodgett(LB) films by LB technique and evaluated the deposited status of LB films by UV-vis absorbance. It was found thatthe thickness of LB films per a layer are $27~30[{\AA}]$ by ellipsometry. The responeses between LB films and organic gases were investigated using by I-V characteristics of LB films and F-R diagram of quartz crystal. The response orders between LB films and organic gases observed by I-V characteristics were as following ; chloroform, methanol, acetone and ethanol in the order of their short chain length. The response mechanism between LB films and organic gases observed by F-R diagram of quartz crystal could be modeled on adsorption at surface, penetration, desorption at surface and inside.

  • PDF

일렉트로크로믹 MoO$_3$ 박막의 제조 및 특성 (Preparation and Characterization of Electromic MoO$_3$Thin Films)

  • 서동규;조봉희;김영호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1994년도 추계학술대회 논문집
    • /
    • pp.179-182
    • /
    • 1994
  • We have investigated the optical and electrochromic properties of molybdenum oxide(MoO$_3$) films by thermal evaporation. The MoO$_3$films deposited at substrate temperatures below 200$^{\circ}C$ are found to be amorphous and annealed films at temperature 300$^{\circ}C$ for 1 hour in air are crystalline. The optical energy gap calculated from the transmittance and reflectance spectra of MoO$_3$ films is near 2.75 eV and 3.25 eV for amorphous films and crystalline films, respectively. The MoO$_3$ thin films exhibit light blue to dark blue optical modulation on lithium intercalation and have a uniform transmittance modulation over a wavelength range of 300∼1100 nmcompared to tungsten oxide films.

The ZnS Film Deposition Technology for Cd-free Buffer Layer in CIGS Solar Cells

  • Lee, Jae-Hee;Hwang, Do-Weon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.218-218
    • /
    • 2011
  • The CIGS Solar Cells have the highest conversion efficiency in the film-type solar cells. They consist of p-type CuInSe2 film and n-type ZnO film. The CdS films are used as buffer layer in the CIGS solar cells since remarkable difference in the lattice constant and energy band gap of two films. The CdS films are toxic and make harmful circumstances. The CdS films deposition process need wet process. In this works, we design and make the hitter and lamp reflection part in the sputtering system for the ZnS films deposition as buffer layer, not using wet process. Film thickness, SEM, and AFM are measured for the uniformity valuation of the ZnS films. We conclude the optimum deposition temperature for the films uniformity less than 1.6%. The ZnS films deposited by the sputtering system are more dense and uniform than the CdS films deposited by the Chemical Bath Deposition Method(CBD) for the CIGS Solar Cells.

  • PDF

BAM(Brewster angle microscopy)을 이용한 PAAS(Polyamic Acid Alkylamine Salts)의 Langmuir막과 Langmuir-Blodgett막의 특성 연구 (A. Study on the PAAS(Polyamic Acid Alkylamine Salts) Langmuir Films and Langmuir-Blodgett Films using BAM(Brewster angle microscopy))

  • 이승엽;강도열;김태완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 추계학술대회 논문집
    • /
    • pp.147-151
    • /
    • 1996
  • Brewster angle microscopy(BAM) makes it possible to observe the monolayer states on the water subphase and the phase transitions from a gaseous phase via a expanded phase to a condensed phase. Also BAM can be used to observe the films on the solid substrate such as Langmuir-Blodgett(LB) films. In this Paper Polyamic Acid Alkylamine Salts(PAAS) was used for forming L films and LB films and $\pi$-A isotherm showed pressure of each phase. We obtained BAM images as surface pressure increased. Images of LB films were compared with data from ellipsometry which was used to measure the film thickness. Images of both L films and LB films were analyzed with computer in the point of brightness.

  • PDF

지방산 LB막의 온도에 대한 유기가스 반응특성 (Organic Gas Response Characteristics for Temperature of Fatty Acid LB Films)

  • 이준호;진철남;장정수;권영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.353-356
    • /
    • 1999
  • The electrical characteristics of fatty acid LB films were investigated to develop the gas sensor using Langmuir-Blodgett(LB) films which have high ordered orientation and ordering structure. The deposition status of fatty acid LB films were verified by the measurements of UV absorbance. The conductivity of fatty acid LB films for horizontal direction at room temperature was about $10^8[S/cm]$,/TEX>, which was correspond to semiconductor material. The activation energy for fatty acid LB films with respect to variation of temperature was about l.O[eV]. The response characteristics for organic gas were confirmed by measuring the response time, recovery time, and reproducibility of the fatty acid LB films to each organic gas. Also, the penetration and adsorption behavior of gas molecule were confirmed through the organic gas response characteristics of fatty acid LB films with respect to temperature.

  • PDF

감습특성이 우수한 금속산화물계 습도센서 연구 (A Study on Metal Oxide based Humidity Sensor with Excellent Humidity Sensing Characteristics)

  • 유도현
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.1982-1988
    • /
    • 2009
  • $TiO_2$ films are fabricated using silk printing method. Heat treatment temperature of films is 600[$^{\circ}C$]. From the analysis of microstructure, grain size of $TiO_2$ films is about $0.2{\sim}0.3[{\mu}m]$. Thickness of films is 30.19[${\mu}m$] and surface uniformity of films is good. From the analysis of crystalline structure, $TiO_2$ films transform anatase phase to rutile phase. Capacitance of films increases according to increase relative humidity and decrease measuring frequency. Hysteresis characteristics of capacitance and impedance are best at 45[%RH] and 75[%RH] respectively. Impedance of films increases according to decrease measuring frequency.

상온에서 분말타겟의 스퍼터에 의해 증착된 ITO박막 (ITO Films Deposited by Sputter Method of Powder Target at Room Temperature.)

  • 김현후;이재형;신성호;신재혁;박광자
    • 한국표면공학회지
    • /
    • 제33권5호
    • /
    • pp.349-355
    • /
    • 2000
  • Indium tin oxide (ITO) thin films have been deposited on PET (polyethylene terephthalate) and glass substrates by a do magnetron sputter method of powder target without heat treatments such as substrate heater and post heat treatment. During the sputtering deposition, sputtering parameters such as sputtering power, working pressure, oxygen gas mixture, film thickness and substrate-target distance are important factors for the high quality of ITO thin films. The structural, electrical and optical properties of as-deposited ITO oxide films are investigated by sputtering power, oxygen partial pressure and films thickness among the several sputtering conditions. XRD patterns of ITO films are affected by sputtering power and pressure. As the power and pressure are increased, (411) and (422) peaks of ITO films are grown strongly. Electrical resistivity is also increased, as the sputtering power and pressure are increased. Transmittance of ITO thin films in the visible light ranges is lowered with an increase of sputtering power and film thickness. Reflectance of ITO films in infra-red region is decreased, as the power and pressure is increased.

  • PDF

유청단백질로 만들어진 식품포장재에 관한 연구

  • 김성주
    • 한국유가공학회:학술대회논문집
    • /
    • 한국유가공기술과학회 2002년도 제54회 춘계심포지움 - 우유와 국민건강
    • /
    • pp.59-60
    • /
    • 2002
  • Edible films such as wax coatings, sugar and chocolate covers, and sausage casings, have been used in food applications for years$^{(1)}$ However, interest in edible films and biodegradable polymers has been renewed due to concerns about the environment, a need to reduce the quantity of disposable packaging, and demand by the consumer for higher quality food products. Edible films can function as secondary packaging materials to enhance food quality and reduce the amount of traditional packaging needed. For example, edible films can serve to enhance food quality by acting as moisture and gas barriers, thus, providing protection to a food product after the primary packaging is opened. Edible films are not meant to replace synthetic packaging materials; instead, they provide the potential as food packagings where traditional synthetic or biodegradable plastics cannot function. For instance, edible films can be used as convenient soluble pouches containing single-servings for products such as instant noodles and soup/seasoning combination. In the food industry, they can be used as ingredient delivery systems for delivering pre-measured ingredients during processing. Edible films also can provide the food processors with a variety of new opportunities for product development and processing. Depends on materials of edible films, they also can be sources of nutritional supplements. Especially, whey proteins have excellent amino acid balance while some edible films resources lack adequate amount of certain amino acids, for example, soy protein is low in methionine and wheat flour is low in lysine$^{(2)}$. Whey proteins have a surplus of the essential amino acid lysine, threonine, methionine and isoleucine. Thus, the idea of using whey protein-based films to individually pack cereal products, which often deficient in these amino acids, become very attractive$^{(3)}$. Whey is a by-product of cheese manufacturing and much of annual production is not utilized$^{(4)}$. Development of edible films from whey protein is one of the ways to recover whey from dairy industry waste. Whey proteins as raw materials of film production can be obtained at inexpensive cost. I hypothesize that it is possible to make whey protein-based edible films with improved moisture barrier properties without significantly altering other properties by producing whey protein/lipid emulsion films and these films will be suitable far food applications. The fellowing are the specific otjectives of this research: 1. Develop whey protein/lipid emulsion edible films and determine their microstructures, barrier (moisture and oxygen) and mechanical (tensile strength and elongation) properties. 2. Study the nature of interactions involved in the formation and stability of the films. 3. Investigate thermal properties, heat sealability, and sealing properties of the films. 4. Demonstrate suitability of their application in foods as packaging materials. Methodologies were developed to produce edible films from whey protein isolate (WPI) and concentrate (WPC), and film-forming procedure was optimized. Lipids, butter fat (BF) and candelilla wax (CW), were added into film-forming solutions to produce whey protein/lipid emulsion edible films. Significant reduction in water vapor and oxygen permeabilities of the films could be achieved upon addition of BF and CW. Mechanical properties were also influenced by the lipid type. Microstructures of the films accounted for the differences in their barrier and mechanical properties. Studies with bond-dissociating agents indicated that disulfide and hydrogen bonds, cooperatively, were the primary forces involved in the formation and stability of whey protein/lipid emulsion films. Contribution of hydrophobic interactions was secondary. Thermal properties of the films were studied using differential scanning calorimetry, and the results were used to optimize heat-sealing conditions for the films. Electron spectroscopy for chemical analysis (ESCA) was used to study the nature of the interfacial interaction of sealed films. All films were heat sealable and showed good seal strengths while the plasticizer type influenced optimum heat-sealing temperatures of the films, 130$^{\circ}$C for sorbitol-plasticized WPI films and 110$^{\circ}$C for glycerol-plasticized WPI films. ESCA spectra showed that the main interactions responsible for the heat-sealed joint of whey protein-based edible films were hydrogen bonds and covalent bonds involving C-0-H and N-C components. Finally, solubility in water, moisture contents, moisture sorption isotherms and sensory attributes (using a trained sensory panel) of the films were determined. Solubility was influenced primarily by the plasticizer in the films, and the higher the plasticizer content, the greater was the solubility of the films in water. Moisture contents of the films showed a strong relationship with moisture sorption isotherm properties of the films. Lower moisture content of the films resulted in lower equilibrium moisture contents at all aw levels. Sensory evaluation of the films revealed that no distinctive odor existed in WPI films. All films tested showed slight sweetness and adhesiveness. Films with lipids were scored as being opaque while films without lipids were scored to be clear. Whey protein/lipid emulsion edible films may be suitable for packaging of powder mix and should be suitable for packaging of non-hygroscopic foods$^{(5,6,7,8,)}$.

  • PDF