• Title/Summary/Keyword: Korean concrete Institute

Search Result 4,814, Processing Time 0.032 seconds

Influence of Steel Bar on Ultrasonic Velocity in Concrete (콘크리트 속의 철근이 초음파 속도에 미치는 영향)

  • Kim, Do-Hyun;Rhim, Hong-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.122-123
    • /
    • 2014
  • Measurement of the strength of concrete is an important indicator of the safety of the fresh as well as old concrete structures. It is possible to evaluate the strength of the concrete by means of an ultrasonic velocity method which is a kind of non-destructive inspection method for safety diagnostic evaluation of the building structures with aging. Steel embedded in the concrete and age of the concrete may affect ultrasonic pulse velocity. In order to accurately assess the strength of the concrete, it is necessary to understand rebar embedded in the concrete, steel shapes in various forms which effect ultrasonic pulse velocity. In this study, by measuring the velocity of ultrasonic waves generated when the waves pass through the ultrasonic pulse in a direction perpendicular to the reinforcing bars embedded in concrete, the effect of reinforcing bars on ultrasonic velocity accurately was verified and used to estimate the strength of the concrete.

  • PDF

A Study on Properties of CFT filled with Expansion Concrete (팽창 콘크리트를 충전한 강관충전 콘크리트의 물성에 관한 연구)

  • Park, Chun-Young;Lee, Jin-Sung;Song, Jong-Mok;Kim, Hyo-Youl;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.117-120
    • /
    • 2008
  • The Purpose of this is properties of CFT filled with expansion concrete. CFT(concrete filled steel tube) is the structure that circle shape steel column filled with concrete. 3 kinds of expansive additives and variation of replacement rate. we changed expansive additive from 0%, 10%, 20%, 30% of ratio of addition rate are selected for this experiment. Merits of CFT are concrete internal force rising influenced by steel shape restriction, reinforcing the local buckling, excellent resistance to transformation. Generally, High rise building using CFT utilize the high strength and fluidity concrete for packing the tube inside. As the result a steel tube charged expensive concrete has stiffness 1.5times more than a steel tube not charged concrete. Increase of resisting power about compressive stress by binding expansion of expansive concrete affects strength increase and softness.

  • PDF

Requirements analysis for production of freeform concrete segments. (비정형 콘크리트 부재 생산을 위한 요구조건 분석)

  • Sung, Soojin;Lee, Donghoon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.68-69
    • /
    • 2014
  • Production of freeform concrete segments use various molds because of the unique shape of it unlike common concrete segments. As a result, the mold for freeform concrete segments cannot be reused. Therefor, cost overrun is occurred by needs of more time and manpower to produce the freeform concrete segments compared with common concrete segments. To prevent the cost overrun, a new production method for the freeform concrete segments is needed to develop and the requirements for it should be analyzed before. Therefor, the aim of this study is requirements analysis for production of freeform concrete segment. The requirements of production of freeform concrete segments and form for it is analyzed in this study. The result of this study would be used to suggest the new production method of freeform concrete segments.

  • PDF

An Experimental Evaluation of Chloride Content and Chloride Penetration Depth in Concrete by Deicing Agent Type (제설제 종류에 따른 콘크리트 염화물 침투깊이 및 염화물량의 실험적 평가)

  • Lee, Sang-Hyun;Jo, Hong-bum;Kim, Young-Sun;Kim, Kwang-Ki;Ryu, Hwang-Sung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.276-277
    • /
    • 2017
  • Deicing agent affect concrete durability such as scaling, rebar corrosion strength of concrete. In this study, developed deicing agent satisfied with EL610 is evaluated to compare affects to concrete with no deicing agent and chloride-containing deicing agents. Deicing agents are applied to concrete surface during four months twice a week. Chloride content, chloride penetration depth and concrete strength are evaluated. After experiment, chloride content, chloride penetration depth of concrete are as follows. Chloride-containing deicing > Eco friendly deicer > No deicing agents. Concrete strength are also as follows. Chloride-containing deicing > Eco friendly deicer > No deicing agents. From experiment, developed deicing agent shows low chloride content in concrete and affect concrete strength little lower than chloride-containing deicing.

  • PDF

Influence of Organic Fiber Kinds on Engineering Properties of Concrete (유기질 섬유 종류가 콘크리트의 공학적 특성에 미치는 영향)

  • Shin Hyun-Sup;Kim Kwang-Ryeon;Lee Gun-Cheol;Kim Byung-Gi;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.27-30
    • /
    • 2006
  • This study investigated influence of organic fiber type and contents on engineering properties of concrete. Test showed that increase of fiber contents decreased fluidity of fresh concrete and it was even worse in concrete adding cellulose fiber. It is decided that concrete containing more than proper level of fiber should be considered. In addition, concrete adding more fiber, nylon and cellulose, resulted in increase of air content but it was satisfied in aimed value. Bleeding capacity of concrete containing more fiber significantly declined and setting time of that was also slightly retarded. For the properties of strength, both compressive and tensile strength of fiber containing concrete were indicated at similar value to control concrete. However, it is clear that if those concrete containing fiber revised the value of increased air contents at fresh state, the strength value of that would be slightly increased.

  • PDF

Evaluation of the Flowability of the Heavyweight Concrete using Magnetite Powder and Copper Slag as Fine Aggregate (자철석 분말 및 동슬래그를 잔골재로 활용한 중량 콘크리트의 유동성 평가)

  • Moon, Hoon;Kim, Ji-Hyun;Chung, Chul-Woo;Lee, Jae-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.195-196
    • /
    • 2018
  • The Research is underway to utilize heavyweight concrete for various applications. One of them is to use heavy concrete as a marine concrete such as a breakwater to resist wave. Marine concrete is often complex in shape and requires high fluidity. When the heavyweight concrete is high fluidity, there is a high risk of segregation due to the high density of the coarse aggregate. Therefore, we evaluate the fluidity of heavyweight concrete using heavy fine aggregate. As a result of the fluidity evaluation of the heavyweight concrete, the fluidity of the heavy fine aggregate was similar to that of ordinary concrete. Therefore, it is considered that the use of heavy fine aggregate in the development of high fluidity heavyweight concrete will be one of the methods.

  • PDF

A Study on the Prediction of Concrete Strength Based on Maturity Method for Calculating the Concrete Strength Correction Value (mSn) of Two-Component Concrete (2성분계 콘크리트의 구조체 보정강도(mSn) 산정을 위한 적산온도 기반 콘크리트의 압축강도 예측 연구)

  • Kim, Han-Sol;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.129-130
    • /
    • 2023
  • The compressive strength of concrete is greatly affected by the temperature inside the concrete at the initial age immediately after pouring. In the KCI Concrete Standard Specification, only the temperature correction strength (Tn) according to the curing temperature is applied in the mixing strength calculation formula, and mSn is not considered. The formula based on the Chrino model of the blast furnace slag concrete was calculated, and the strength of the structural concrete and the strength of the water cured specimen in the same mixture were compared with the predicted strength. As a result, the error between the predicted strength and the measured strength was greater in the structural concrete than in the concrete specimen.

  • PDF

Adhesion Characteristic and Porosity Change of Alkali Silicate Impregnant of Concrete (Silicate계 콘크리트 함침제 도포에 따른 부착특성 및 공극변화)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu;Lim, Young-Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.4
    • /
    • pp.276-282
    • /
    • 2010
  • There are the impregnating layer formation by surface protective materials or impregnants and the adhesion method by polymer, FRP sheet or steel plate in the surface protective method of concrete structure. The surface impregnation method by impregnants improves the durability of concrete structure by modifying the structure of the concrete surface and also have a merit that can be shortly applied in place without the decrease of concrete surface appearance and is easily applied again. This study is interested in manufacturing the concrete surface impregnants including lithium and potassium silicate for the repair of the exposed concrete and the color concrete requiring the advanced function in view of the concrete appearance. The durability and porosity properties was tested for the review of application. The result of this study show that the effective content of silicate ranges 5 to 20% and the separate application of the first impregnant and the second impregnant is effective for the optimum performance. The adhesion in tension is slightly increased but the reinforcement of concrete substrate is slight. So, the concrete impregnant of this study is more desirable for the improvement of durability rather than the reinforcement.

Governing Design Factors of GFRP-Reinforced Concrete Bridge Deck (GFRP 근 보강 콘크리트 교량 바닥판의 설계지배인자)

  • Cho, Jeong-Rae;Park, Young Hwan;Park, Sung Yong;Cho, Kunhee;Kim, Sung Tae
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.70-77
    • /
    • 2015
  • In this study, the governing design factors of GFRP-reinforced concrete bridge deck are analyzed for typical bridges in Korea. The adopted bridge deck is a cast-in-situ concrete bridge deck for the prestressed concrete girder bridge with dimensions of 240 mm thickness and 2.75 m span length from center-to-center of supporting girders. The selected design variables are the diameters of GFRP rebar, spacings of GFRP rebars and concrete cover thicknesses, Considering the absence of the specification relating GFRP rebar in Korea, AASHTO specification is used to design the GFRP-reinforced concrete bridge deck. The GFRP-reinforced concrete bridge deck is proved to be governed by the criteria about serviceability, especially maximum crack width, while steel reinforced concrete bridge deck is governed by the criteria on ultimate limit state. In addition, GFRP rebars with diameter of 16 mm ~ 19 mm should be used for the main transverse direction of decks to assure appropriate rebar spacings.

Study on concrete surface damage using hyper-spectral remote sensing

  • Nakajima, Takashi;Endo, Takahiro;Yasuoka, Yoshifumi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1055-1057
    • /
    • 2003
  • In this research, the concrete with paint film was classified using hyper-spectral remote sensing. First, spectral characteristics of concrete and concrete with some kinds of paint films were investigated with a spectrometer. Second, using reflectance and first order derivative, spectral characteristics of the normal concrete and the concrete with paint film were classified. By using hyper-spectral remote sensing, not only extraction of crack but also inspection of paint film distribution is possible.

  • PDF