• Title/Summary/Keyword: Korean ash

Search Result 4,931, Processing Time 0.03 seconds

Study on the utilization of the industrial waste materials and the briquette ash as mixing materials for the concrete Products (콘크리트 製品製造에 産業廢棄物과 연탄재의 利用에 關한 硏究)

  • Kim, Seong-Wan
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.4
    • /
    • pp.99-107
    • /
    • 1979
  • In order to investigate the utilization of industrial waste and briquette ash for concrete production, briquette ash was used as fine aggregate for mortar production and three different kinds mortars were produced by mixing carbide and bottom aches with cement. These products were compared with mortar, produced by standard sand, in the respects of compressive, tensil and bending strengths. Further study on the economic aspect of utilization of briquette ash is needed but the results obtained from our preliminary study are summarized as follows : 1. The compressive strengths at the age of seven days of mortars, made of one to two ratios of cement to briquette ash, (cement+carbide ash) to briquette ash and(cement+bottom ash) to briquette ash were 70%, 61% and 58%, respectively, of the mortar made of standard sand. The compressive strengths of those mortars at the age of 28 days were 56%, 49% and 48% of the mortar made standard sand. 2. The compressive strengths at the age of seven days of the mortar made of one to two ratios of cement to briquette ash, (cement+carbide ash) to briquette ash and (cement+bottom ash) to briquette ash were 84%, 73%, and 70% of the mortar which was produced according to Korean Standard Value. The compressive strengths of those mortars at the age of 28 days were 85%, 73% and 73% of the mortar of the Korean Standard value. 3. The tensil strengths at the age of seven days of the mortars made of one to two ratios of cement to briquette ash, (cement+carbide ash) to briquette ash, and (cement+bottom ash) to briquette ash were 64%, 36%, and 36%, respectively, of the mortar of standard sand. The tensil strengths of those mortars at the age of 28 days were 70%, 47%, and 39%, respectively, of the standard mortar. The mortars made of one to two ratios of cement to briquette ash at the age of seven and 28 days were higher than the mortars of Korean Standard. The other mortars were 61 to 62% at the age of seven days and 75 to 90% at the age of 28 days of the Korean Standard mortar, respectively. 4. The bending strengths at the age of seven days of mortar made of one to two ratios of cement to briquette ash, (cement+carbide ash) to briquette ash, and (cement+bottom ash) to briquette ash were 46%, 53% and 50% of the mortar of standard sand. The bending strengths of those mortars at the age of 28 days were 90%, 77% and 69%, respectively of the mortar of standard sand. 5. The mortar of briquette ash which was lower in strengths compared with the mortar of cement have shown possibility of its secondary products of cement and concrete. The uses of briquette ash and industrial waste as construction materials would contribute toward solving various pollution problems caused by industrial wastes and saving labor costs needed to cleaning up. Furthermore, the effective use of briquette ash would greatly save the aggregate resources.

  • PDF

Assessment of potential environmental impact from fly ash landfill (국내 석탄회 육상매립의 오염 잠재성 평가)

  • Lee, Sang Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.4
    • /
    • pp.25-35
    • /
    • 1999
  • Fly ash, by-product from coal fired power station, has long been regarded as a potential contamination source for heavy metals and inorganics due to their enriched concentrations and associations with particle surface. Feed coal and fly ash samples were collected from two power stations; Yongdong deliang with domestic anthracite coals and Boryong with imported bituminous coals. The coal and fly ash samples were analyzed for chemical composition and mineral components, using XRF and XRD. Batch leaching experiments were conducted by agitating samples with deionised water for 24 hours. Anthracite coals are generally higher in Al and Si contents than bituminous coals. This is due to the higher ash contents of the anthracite coal than bituminous coal. The chemistry of the two fly ash samples shows broadly similar compositions each other, except for the characteristically high contents of Cr in anthracite coal fly ash. Leaching experiments revealed that concentrations of metals gradually decreased with leachings in general. However, measurable amounts of metals were present in the effluent from weathered ash and the samples subjected to the leaching procedure. These metals are likely to indicate that the metals in fly ash were incorporated into glass fraction as well as associated with particle surface of samples. Dissolution of aluminosilicate glass would control releasing heavy metals from fly ash as weathering progresses during landfill with implication of possible groundwater contamination through fly ash landfill.

  • PDF

Effect of volcanic ash on cell growth and production of exopolymers

  • Kim, Ji-Mo;Park, Hong-Gil;Jeong, Dae-Il;Kim, Gwang;Kim, Sang-Ok;Lee, Jin-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.342-345
    • /
    • 2000
  • Effect of volcanic ash on cell growth of Aspergillus sp. and production of exopolymers by Agrobacterium sp. and Aureobasidium pullualns was investigated. The volcanic ash contained various mineral salts such as $SiO_2$, $Al_2O_3$, CaO, $K_2O$. Maximal cell growth of Aspergillus sp. was obtained when 0.3% volcanic ash was added to medium. Cell growth of Aspergillus sp. increased with higher concentration of volcanic ash in medium. Amount of cell growth with 0.3 % volcanic ash was 6.7 times higher than that without volcanic ash. Volcanic ash also stimulated production of exopolymer as well as cell growth. Production of curdlan with 0.1% volcanic ash was 12.40 g/l whereas that without volcanic ash was 9.15 g/l. Production of pullulan with volcanic ash was also higher than that without volcanic ash.

  • PDF

Removal of Unburned-Carbon from Fly-Ash of Bituminous Coal by Froth Flotation (포말부유선광법에 의한 유연탄 비산회의 미연탄소분 제거연구)

  • Son, Sung-Geun;Kim, Jung-Duk;Park, Byung-Wook
    • Resources Recycling
    • /
    • v.5 no.3
    • /
    • pp.44-49
    • /
    • 1996
  • One of the most serious problems in utilizing the fly-ash produced from damcstic coal-firing power plants is lhc unburned-carbon mntained m the fly-ash In this shldy, the effects of fruther and collector an the yield,recuvery,unburnedcarbon rejectiou peiccntage,and process efficiency of product (cleaned fly-ash) wcrc examined when convzntional froth flotation was applied to rejcct the unburned-carbon included in the fly-ash of bituminous coal Alsa,the ash analysis for both thc raw and the clcaned fly-ash was conducted to review the change in thc major elements of fly-ash. Experimental results shawcd lhat tlle rcjectlon oI the unburned-cubon of thc raw fly-ash sample is available upto 92.4% using fiath flotalian and that the putity ol the pmdud(c1eancd fly-ash) attains up to 99.4%.

  • PDF

A Study on Development of Shotcrete Material using Fly Ash (Fly Ash을 이용한 Shotcrete 재료의 개발에 관한 연구)

  • 한오형;강추원
    • Explosives and Blasting
    • /
    • v.21 no.2
    • /
    • pp.21-30
    • /
    • 2003
  • Currently, the shotcrete used as basic support in the tunnel excavation, has the advantages of maintaining high-level strength in condition of early shooting with thin thickness based on the excavation characteristics of rock mass. Therefore supreme equipment and materials were developed and the great strides have continued. Also, the development of measurement technology and the rocks behaviors of undergound are evaluated in detail and the designs of strength and thickness are made. The reinforcement materials development of new material is carried on. Most of the coal fly ash produced in Korea fire power plant is fly ash and bottom mash. Fly ash has been producing to be applied in many fields such as cement, aggregate, construction, civil, agriculture and fisheries. Also a lot of experiments are actively on the way. Therefore in this experiment, in order to use the fly ash mixed with concrete as a material of shotcrete, the experiment was performed in the best content to reduce the compression strength and the shooting rebound ratio of the excavated surface to use fly ash as a substitute material of concrete. As a result, when 15%.wt substitution was made to the fly ash, about 10% of compression strength and 6% of rebound ratio was reduced.

The Analysis of Volcanic-ash-deposition Damage using Spatial-information-based Volcanic Ash Damage Sector and Volcanic Ash Diffusion Simulation of Mt. Aso Volcano Eruption Scenario (공간정보 기반의 국내 화산재 피해 분야와 아소산 화산재 모의 확산 시나리오를 활용한 화산재 누적 피해 분석)

  • Baek, Won-Kyung;Kim, Miri;Han, Hyeon-gyeong;Jung, Hyung-Sup;Hwang, Eui-Hong;Lee, Haseong;Sun, Jongsun;Chang, Eun-Chul;Lee, Moungjin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1221-1233
    • /
    • 2019
  • Estimating damage in each sector that can be caused by volcanic ash deposition, is very important to prepare the volcanic ash disaster. In this study, we showed predicted-Korean-volcanic-ash damage of each sector by using volcanic ash diffusion simulation and spatial-data-based volcanic ash damage sector in previous study. To this end, volcanic ash related base maps were generated by collecting and processing spatial information data. Finally, we showed Korean-volcanic-ash-deposition damages by sector using the collected Mt. Aso volcanic ash scenarios via overlapping analysis. As a result, volcanic-ash-related damages were expected to occur in the 162 and 134 districts for each Aso volcanic ash scenarios, since those districts exceeds the minimum volcanic ash damage criterion of 0.01 mm. Finally, we compared possible volcanic ash damages by sectors using collected and processed spatial data, after selecting administrative districts(Scenario 190805- Kangwon-do, Kyungsangbuk-do; Scenario 190811-Chuncheon-si, Hongcheon-si) with the largest amount of volcanic ash deposition.

Compressive Strength Properties of Geopolymers from Pond Ash and Possibility of Utilization as Synthetic Basalt

  • Kim, Byoungkwan;Lee, Bokyeong;Chon, Chul-Min;Lee, Sujeong
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.365-373
    • /
    • 2019
  • Pond ash is a mixture of mostly coarser fly ash and bottom ash. The recycling rate of pond ash is low because pond ash is mixed with seawater and deposited in ponds. The pond ash is also subjected to natural weathering over a period of time. In this study, we investigated whether pond ash can be used as a raw material of geopolymers, without any purification process or through a minimal purification process. In addition, we investigated whether synthetic basalt made by adding foaming agent to geopolymer or casting it into a mold can show the surface of the natural basalt as it is. The highest 7-day compressive strength in geopolymers from pond ash without purification process was 26 MPa. The highest 7-day compressive strength in geopolymers from pond ash with impurities removed through dry sieve analysis was found to improve to 80 MPa. On the other hand, synthetic basalt made with geopolymer was shown to be more advantageous aesthetically when produced by casting it in a silicone mold rather than by adding a foaming agent. Non-purified pond ash can be made into geopolymers having low strength. Pond ash purified by sieving can, without use of an aggregate, be made into geopolymer having high-strength. Also, it is possible to produce synthetic basalt with the same appearance as natural basalt and sufficient strength for commercialization. This process will contribute to the mass consumption and recycling of pond ash.

The Numerical Simulation of Volcanic Ash Dispersion at Aso Caldera Volcano using Ash3D Model (Ash3D 모델을 이용한 아소 칼데라 화산에서의 화산재 확산 수치모의 연구)

  • Chang, Cheolwoo;Yun, Sung-Hyo
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.115-128
    • /
    • 2017
  • Aso caldera volcano is located in central Kyushu, Japan which is one of the largest caldera volcanoes in the world. Nakadake crater is the only active central cone in Aso caldera. There was an explosive eruption on October 8, 2016, the eruption column height was 11 km, and fallout ash was found 300 km away from the volcano. In this study, we performed a numerical simulation to analyze the ash dispersion and the fallout tephra deposits during this eruption using Ash3D that was developed by the United States Geological Survey. The result showed that the ash would spread to the east and northeast, that could not affect the Korean peninsula, and the volcanic ash was deposited at a place from a distance of 400 km or more in the direction of east and northeast. The result was in close agreement with the identified ashfall deposits. Ash3D can be useful for quick forecast for the effects of hazards caused by volcanic ash.

Acid Blue 92 (Leather Dye) Removal from Wastewater by Adsorption using Biomass Ash and Activated Carbon

  • Purai, Abhiti;Rattan, V.K.
    • Carbon letters
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The adsorption of Acid Blue 92 onto three low cost and ecofriendly biosorbents viz., cow dung ash, mango stone ash and parthenium leaves ash and commercial activated carbon have discussed in this work. The ash of all the mentioned bio-wastes was prepared in the muffle furnace at $500^{\circ}C$ and all the adsorbents were stored in an air thermostat. Experiments at total dye concentrations of 10~100 mg/L were carried out with a synthetic effluent prepared in the laboratory. The parameters such as pH and dye concentration were varied. Equilibrium adsorption data followed both Langmuir and Freundlich isotherms. The results indicate that cow dung ash, mango stone ash and parthenium leaves ash could be employed as low-cost alternatives to commercial activated carbon in wastewater treatment for the removal of dye.

A Study on the Compressive Strength Property of Concrete using Rice Straw Ash (소성볏짚을 혼입한 콘크리트의 압축강도 특성에 관한 연구)

  • Jeong, Euy-Chang;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.26-27
    • /
    • 2015
  • The purpose of this study was to investigate the compressive strength property into concrete using rice straw ash.. In an effort to evaluate the effects of rice straw ash as mineral admixture, rice straw ash was mixed with cement at the mixture ratio of 0, 5, 10 and 15% relative to the cement weight. When the mixture ratio of rice straw ash was 10%, the highest compressive strength was observed, while the strength tended to decrease when the mixture ratio of rice straw ash was 15% even if it exhibited higher compressive strength than the plain. And it was observed that compressive strength of concrete containing rice husk ash was a similar a compressive strength of concrete containing silica fume.

  • PDF