• 제목/요약/키워드: Korean Energy Industry

검색결과 2,642건 처리시간 0.035초

Characterization of aluminized RDX for chemical propulsion

  • Yoh, Jai-ick;Kim, Yoocheon;Kim, Bohoon;Kim, Minsung;Lee, Kyung-Cheol;Park, Jungsu;Yang, Seungho;Park, Honglae
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권3호
    • /
    • pp.418-424
    • /
    • 2015
  • The chemical response of energetic materials is analyzed in terms of 1) the thermal decomposition under the thermal stimulus and 2) the reactive flow upon the mechanical impact, both of which give rise to an exothermic thermal runaway or an explosion. The present study aims at building a set of chemical kinetics that can precisely model both thermal and impact initiation of a heavily aluminized cyclotrimethylene-trinitramine (RDX) which contains 35% of aluminum. For a thermal decomposition model, the differential scanning calorimetry (DSC) measurement is used together with the Friedman isoconversional method for defining the frequency factor and activation energy in the form of Arrhenius rate law that are extracted from the evolution of product mass fraction. As for modelling the impact response, a series of unconfined rate stick data are used to construct the size effect curve which represents the relationship between detonation velocity and inverse radius of the sample. For validation of the modeled results, a cook-off test and a pressure chamber test are used to compare the predicted chemical response of the aluminized RDX that is either thermally or mechanically loaded.

기후변화에 대응한 농업생명공학의 기회와 도전 (Agricultural biotechnology: Opportunities and challenges associated with climate change)

  • 장안철;최지영;이신우;김동헌;배신철
    • Journal of Plant Biotechnology
    • /
    • 제38권2호
    • /
    • pp.117-124
    • /
    • 2011
  • Considering that the world population is expected to total 9 billion by 2050, it will clearly be necessary to sustain and even accelerate the rate of improvement in crop productivity. In the 21st century, we now face another, perhaps more devastating, environmental threat, namely climate change, which could cause irreversible damage to agricultural ecosystem and loss of production potential. Enhancing intrinsic yield, plant abiotic stress tolerance, and pest and pathogen resistance through agricultural biotechnology will be a critical part of feeding, clothing, and providing energy for the human population, and overcoming climate change. Development and commercialization of genetically engineered crops have significantly contributed to increase of crop yield and farmer's income, decrease of environmental impact associated with herbicide and insecticide, and to reduction of greenhouse gas emissions from this cropping area. Advances in plant genomics, proteomics and system biology have offered an unprecedented opportunities to identify genes, pathways and networks that control agricultural important traits. Because such advances will provide further details and complete understanding of interaction of plant systems and environmental variables, biotechnology is likely to be the most prominent part of the next generation of successful agricultural industry. In this article, we review the prospects for modification of agricultural target traits by genetic engineering, including enhancement of photosynthesis, abiotic stress tolerance, and pest and pathogen resistance associated with such opportunities and challenges under climate change.

요소분해효소 기반 식물추출액을 이용한 광산폐기물 내 중금속 오염 저감 (Bioremediation of Heavy Metal Contaminated Mine Wastes using Urease Based Plant Extract)

  • 노승범;박민정;전철민;김재곤;송호철;윤민호;남인현
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권1호
    • /
    • pp.56-64
    • /
    • 2015
  • Acid mine drainage occurrence is a serious environmental problem by mining industry, it usually contains high levels of metal ions, such as iron, copper, zinc, aluminum, and manganese, as well as metalloids of which arsenic is generally of the greatest concern. An indigenous plant extract was used to produce calcium carbonate from Canavalia ensiformis as effective biomaterial, and its ability to form the calcium carbonate under stable conditions was compared to that of purified urease. X-ray diffraction and scanning electron microscopy were employed to elucidate the mechanism of calcium carbonate formation from the crude plant extracts. The results revealed that urease in the plant extracts catalyzed the hydrolysis of urea in liquid state cultures and decreased heavy metal amounts in the contaminated soil. The heavy metal amounts were decreased in the leachate from the treated mine soil; 31.7% of As, 65.8% of Mn, 50.6% of Zn, 51.6% of Pb, 45.1% of Cr, and 49.7% of Cu, respectively. The procedure described herein is a simple and beneficial method of calcium carbonate biomineralization without cultivation of microorganisms or further purification of crude extracts. This study suggests that crude plant extracts of Canavalia ensiformis have the potential to be used in place of purified forms of the enzyme during remediation of heavy metal contaminated soil.

스털링기관용 재생기에 관한 기초연구 (II) - 철망을 축열재로 한 재생기의 전열 및 유동손실특성 - (Basic Study on the Regenerator of Stilting Engine (II) - Heat transfer and flow friction loss characteristics of the regenerator with wire screen matrix -)

  • 김태한;이시민;이정택
    • Journal of Biosystems Engineering
    • /
    • 제27권6호
    • /
    • pp.529-536
    • /
    • 2002
  • The performance of stilting engine, in particular, its energy conversion efficiencies are critically influenced by the regenerator characteristics. The regenerator characteristics are influenced by effectiveness, void fraction. heat transfer loss and fluid friction loss in the regenerator matrix. These factors were influenced by the surface geometry and material properties of the regenerator matrix. The regenerator design goals arc good heat transfer and low pressure drop of working Bas across the regenerator. Various data for designing a wire screen matrix have been given by Kays and London(1984). The mesh number of their experiment. however, was confined below the No. 60. which seems rather small for the Stirling engine applications. In this paper. in order to provide a basic data for the design of regenerator matrix, characteristics of heat transfer and flow friction loss were investigated by a packed mettled of matrix in oscillating flow as the same condition of operation in a Stirling engine. Seven kinds of sing1e wire screen meshes were used as the regenerator matrices. The results are summarized as follows; 1. While the working fluid flew slowly in the regenerator. the temperature difference was great at the both hot-blow(the working fluid flows from healer to cooler) and cold-blow(the working fluid flows from cooler to healer). On the other hand. while the working fluid flew fast. the temperature difference was not distinguished. 2. The No.150 wire screen used as the regenerator matrix showed excellent performance than tile others. 3. Phase angle variation and filling rate affected heat transfer or regenerator matrices. 4. Temperature difference between the inlet and outlet of the regenerator is very hish in degree of 120 phase angle.

정전기적 흡·탈착 공정에서의 탄소 전극 (Carbon Electrodes in Capacitive Deionization Process)

  • 정상호;이재광;조이 오콘;손영일;이재영
    • 공업화학
    • /
    • 제25권4호
    • /
    • pp.346-351
    • /
    • 2014
  • 인구증가와 산업화로 인한 물의 수요 급증에 따른 제3세대 수처리 기술로써 정전기적 흡 탈착 공정에 대한 연구가 진행되고 있다. 정전기적 흡 탈착 기술의 경우, 기존에 사용되는 수처리 방법들에 비해 에너지 소비량이 적으며, 재생시에 2차 오염이 발생하지 않아 차세대 수처리 기술로 주목 받고 있다. 정전기적 흡 탈착 기술에서 이온 제거를 위한 전극 물질로는 넓은 비표면적과 높은 전도도를 갖는 탄소 전극이 주로 사용된다. 현재 다양한 탄소 물질로 이루어진 전극에 대한 연구가 수행되고 있으며, 특히 비표면적, 기공 분포에 따른 흡 탈착 연구가 활발히 진행되고 있다. 본 총설에서는 다양한 탄소 물질 및 기공 분포에 따른 영향을 분석하고, 메조기공과 마이크로기공이 조화를 이루는 최적의 조건을 제시하고자 한다.

운전조건에 따른 펌프 터빈 시스템의 안정성 연구 (Reliability Investigation of a Pump-Turbine System at Various Operating Conditions)

  • 천청청;패트릭마크싱;최영도
    • 한국유체기계학회 논문집
    • /
    • 제18권3호
    • /
    • pp.46-52
    • /
    • 2015
  • Pump-turbine system is widely used by the hydropower industry for stabilizing the electrical grid in the vast growing economy of most developed countries. This study only investigates the Fluid-structure Interaction (FSI) analysis of the pump-turbine system at various operating conditions. The FSI analysis can show how reliable each component of the system is by providing the engineer with a better understanding of high stress and deformation points, which could reduce the lifespan of the pump-turbine. Pump-turbine components are categorized in two parts, pressurized static parts and movable stressed parts. The fixed parts include the spiral casing, top and bottom cover, stay vane and draft tube. The movable parts include guide vanes and impeller blades. Fine hexahedral numerical grids were used for CFD calculation and fine tetrahedral grids were used for structural analysis with imported load solution mapping greater than 90 %. The maximum equivalent stress are much smaller than the material yield stress, and the maximum equivalent stress showed an increasing tendency with the varying of operating conditions from partial to excessive at both modes. In addition, the total deformation of all the operating conditions showed a small magnitude, which have quite small influence on the structural stability. It can be conjectured that this system can be safely implemented.

AC8A 알루미늄 합금 주조재의 열처리에 의한 특성 평가(II) (Evaluation of the Characteristics of the Aluminum Alloy(AC8A) Casting Material by Heat Treatment(II))

  • 문경만;정재현;이명훈;백태실
    • 동력기계공학회지
    • /
    • 제20권5호
    • /
    • pp.29-36
    • /
    • 2016
  • Aluminum alloys have been widely used in engine materials, cold & hot-water storage vessels and piping etc., Furthermore, the aluminum alloy of AC8A have been widely used in mold casting material of engine piston for various vehicles because of its properties of temperature, wear and corrosion resistance. Therefore, it is considered that evaluation of corrosion resistance as well as wear resistance of AC8A material is also important to improve its property and to prolong its lifetime. In previous paper, the effect of solution($510^{\circ}C$:4hrs) and tempering($190^{\circ}C$: 16, 24, and 36 hrs)heat treatments to corrosion resistance and hardness were investigated using electrochemical method. In this study, in order to examine completely the effect of the tempering hours to hardness variation and corrosion resistance, the results of solution($510^{\circ}C$:4hrs) and tempering($190^{\circ}C$: 2, 4, 8 and 12hrs)heat treatments to hardness and corrosion resistance were investigated using electrochemical method. The hardness decreased with solution heat treatment compared to mold casting condition, but its value increased with tempering heat treatment. Furthermore, the corrosion resistance increased with decreasing of the hardness, and decreased with increasing of the hardness reversely. And the tempering heat treatment temperature at $190^{\circ}C$ for 8 hrs exhibited the highest value of the hardness and also indicated the highest corrosion current density. However, the values of hardness and corrosion current density was again increasingly decreased with increasing of tempering hours than 8 hrs, Consequently, it is suggested that decision of the optimum. tempering hours is very important to improve the corrosion or wear resistance.

극저온 $CO_2$ 세정과정 시 미세오염물의 탈착 메커니즘 연구 (A dynamic analysis on minute particles' detachment mechanism in a cryogenic $CO_2$ cleaning process)

  • 석종원;이성훈;김필기;이주홍
    • 반도체디스플레이기술학회지
    • /
    • 제7권4호
    • /
    • pp.29-33
    • /
    • 2008
  • Rapid increase of integrity for recent semiconductor industry highly demands the development of removal technology of contaminated particles in the scale of a few microns or even smaller. It is known that the surface cleaning technology using $CO_2$ snow has its own merits of high efficiency. However, the detailed removal mechanism of particles using this technology is not yet fully understood due to the lack of sophisticated research endeavors. The detachment mechanism of particles from the substrates is known to be belonged in four types; rebounding, sliding, rolling and lifting. In this study, a modeling effort is performed to explain the detachment mechanism of a contaminant particle due to the rebounding caused by the vertical collision of the $CO_2$ snow. The Hertz and Johnson-Kendall-Roberts(JKR) theories are employed to describe the contact, adhesion and deformation mechanisms of the particles on a substrate. Numerical simulations are followed for several representative cases, which provide the perspective views on the dynamic characteristics of the particles as functions of the material properties and the initial inter-particle collision velocity.

  • PDF

Gene Cloning and Characterization of MdeA, a Novel Multidrug Efflux Pump in Streptococcus mutans

  • Kim, Do Kyun;Kim, Kyoung Hoon;Cho, Eun Ji;Joo, Seoung-Je;Chung, Jung-Min;Son, Byoung Yil;Yum, Jong Hwa;Kim, Young-Man;Kwon, Hyun-Ju;Kim, Byung-Woo;Kim, Tae Hoon;Lee, Eun-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권3호
    • /
    • pp.430-435
    • /
    • 2013
  • Multidrug resistance, especially multidrug efflux mechanisms that extrude structurally unrelated cytotoxic compounds from the cell by multidrug transporters, is a serious problem and one of the main reasons for the failure of therapeutic treatment of infections by pathogenic microorganisms as well as of cancer cells. Streptococcus mutans is considered one of the primary causative agents of dental caries and periodontal disease, which comprise the most common oral diseases. A fragment of chromosomal DNA from S. mutans KCTC3065 was cloned using Escherichia coli KAM32 as host cells lacking major multidrug efflux pumps. Although E. coli KAM32 cells were very sensitive to many antimicrobial agents, the transformed cells harboring a recombinant plasmid became resistant to several structurally unrelated antimicrobial agents such as tetracycline, kanamycin, rhodamin 6G, ampicillin, acriflavine, ethidium bromide, and tetraphenylphosphonium chloride. This suggested that the cloned DNA fragment carries a gene encoding a multidrug efflux pump. Among 49 of the multidrug-resistant transformants, we report the functional gene cloning and characterization of the function of one multidrug efflux pump, namely MdeA from S. mutans, which was expressed in E. coli KAM32. Judging from the structural and biochemical properties, we concluded that MdeA is the first cloned and characterized multidrug efflux pump using the proton motive force as the energy for efflux drugs.

마이크로피브릴화 셀룰로오스를 이용한 바이오산업의 동향 (Trends and Prospects of Microfibrillated Cellulose in Bio-industries)

  • 정영훈
    • 한국미생물·생명공학회지
    • /
    • 제45권1호
    • /
    • pp.1-11
    • /
    • 2017
  • 본 논문에서는 나노셀룰로오스의 일종으로 최근 가장 주목을 받고 있는 소재인 마이크로피브릴화 셀룰로오스에 대하여 살펴보았다. 마이크로피브릴화 셀룰로오스는 리그노셀룰로오스계 바이오매스의 셀룰로오스에서 유래한 섬유로 풍부하고, 재생가능하며, 지속 가능한 천연 소재의 일종이다. 주로 물리적 전처리에 의해 생성되며, 나노미터에서 마이크로미터에 이르는 다양한 소섬유들의 결합으로 이루어져 있다. 이로 인해 마이크로피브릴화 셀룰로오스는 높은 표면적과, 높은 aspect ratio, 그리고 특이적인 용해성을 가지게 되고, 이는 전통적인 목재 산업 뿐만 아니라, 최신식의 식품/바이오/화학/의료 산업에 이르는 다양한 영역에의 적용 가능성을 보여주는 주요한 원인이 된다. 한편 이러한 응용력에도 불구하고, 아직 마이크로피브릴화 셀룰로오스는 제조 시 필요한 높은 에너지량과 반응성 조절의 어려움 때문에 상업적으로 많은 주목을 받지 못하고 있다. 따라서, 마이크로피브릴화 셀룰로오스의 기질에 대한 특성을 이해 및 구체화하고, 마이크로피브릴화 셀룰로오스의 피브릴화도를 선택하며, 표면의 개량을 선택적으로 조절할 수 있는 시스템을 개발하는 연구가 필요할 것이다. 마이크로피브릴화 셀룰로오스가 향후 우리나라의 산업 전반에 걸쳐 활용될 수 있기를 기대해 본다.