DOI QR코드

DOI QR Code

Trends and Prospects of Microfibrillated Cellulose in Bio-industries

마이크로피브릴화 셀룰로오스를 이용한 바이오산업의 동향

  • Jung, Young Hoon (School of Food Science and Biotechnology, Kyungpook National University)
  • 정영훈 (경북대학교 식품공학부)
  • Received : 2017.02.10
  • Accepted : 2017.03.19
  • Published : 2017.03.28

Abstract

In this review, we focus on one of the most attractive biomaterials, microfibrillated cellulose (MFC). MFC, a type of nanocellulose, mainly originates from cellulose in lignocellulosic biomass. MFC represents one of incredible important natural resources due to its abundancy, renewability, and sustainability. MFC is produced through mechanical pretreatment, and it is composed of various sizes of microfibers, ranging from a few nanometers to a few micrometers. Because of the heterogenetic compositions of MFC, it possesses superior properties as a material, such as high surface area, high aspect ratio, and peculiar insolubility as a biomaterial. These properties allow MFC to be used in various bio-industries, from the traditional pulp industry to the high-tech food/bio/chemical/medical industries. However, it is difficult to use MFC on a commercial scale owing to the high energy input required during its production and the challenge of controlling its reactivity. Therefore, future studies should be focused on accurately characterizing MFC's surface morphologies, regulating its characteristics in a desirable direction, and standardizing proper guidelines for the analysis of surface morphologies its analysis.

본 논문에서는 나노셀룰로오스의 일종으로 최근 가장 주목을 받고 있는 소재인 마이크로피브릴화 셀룰로오스에 대하여 살펴보았다. 마이크로피브릴화 셀룰로오스는 리그노셀룰로오스계 바이오매스의 셀룰로오스에서 유래한 섬유로 풍부하고, 재생가능하며, 지속 가능한 천연 소재의 일종이다. 주로 물리적 전처리에 의해 생성되며, 나노미터에서 마이크로미터에 이르는 다양한 소섬유들의 결합으로 이루어져 있다. 이로 인해 마이크로피브릴화 셀룰로오스는 높은 표면적과, 높은 aspect ratio, 그리고 특이적인 용해성을 가지게 되고, 이는 전통적인 목재 산업 뿐만 아니라, 최신식의 식품/바이오/화학/의료 산업에 이르는 다양한 영역에의 적용 가능성을 보여주는 주요한 원인이 된다. 한편 이러한 응용력에도 불구하고, 아직 마이크로피브릴화 셀룰로오스는 제조 시 필요한 높은 에너지량과 반응성 조절의 어려움 때문에 상업적으로 많은 주목을 받지 못하고 있다. 따라서, 마이크로피브릴화 셀룰로오스의 기질에 대한 특성을 이해 및 구체화하고, 마이크로피브릴화 셀룰로오스의 피브릴화도를 선택하며, 표면의 개량을 선택적으로 조절할 수 있는 시스템을 개발하는 연구가 필요할 것이다. 마이크로피브릴화 셀룰로오스가 향후 우리나라의 산업 전반에 걸쳐 활용될 수 있기를 기대해 본다.

Acknowledgement

Supported by : Kyungpook National University

References

  1. Jung YH, Kim HK, Park HM, Park Y-C, Park K, Seo J-H, et al. 2015. Mimicking the Fenton reaction-induced wood decay by fungi for pretreatment of lignocellulose. Bioresour. Technol. 179: 467-472. https://doi.org/10.1016/j.biortech.2014.12.069
  2. Sims REH, Mabee W, Saddler JN, Taylor M. 2010. An overview of second generation biofuel technologies. Bioresour. Technol. 101: 1570-1580. https://doi.org/10.1016/j.biortech.2009.11.046
  3. Loque D, Scheller HV, Pauly M. 2015. Engineering of plant cell walls for enhanced biofuel production. Curr. Opin. Plant Biol. 25: 151-161. https://doi.org/10.1016/j.pbi.2015.05.018
  4. Lee JW, Kim HU, Choi S, Yi J, Lee SY. 2011. Microbial production of building block chemicals and polymers. Curr. Opin. Biotechnol. 22: 758-767. https://doi.org/10.1016/j.copbio.2011.02.011
  5. Jung YH, Park HM, Kim IJ, Park Y-C, Seo J-H, Kim KH. 2014. Onepot pretreatment, saccharification and ethanol fermentation of lignocellulose based on acid-base mixture pretreatment. RSC Adv. 4: 55318-55327. https://doi.org/10.1039/C4RA10092A
  6. Oh EJ, Ha S-J, Rin Kim S, Lee W-H, Galazka JM, Cate JHD, et al. 2013. Enhanced xylitol production through simultaneous coutilization of cellobiose and xylose by engineered Saccharomyces cerevisiae. Metabol. Eng. 15: 226-234. https://doi.org/10.1016/j.ymben.2012.09.003
  7. Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, et al. 2011. Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. NREL/TP-5100-47764, Golden, CO; Available from: http://www.nrel.gov/docs/fy11osti/47764.pdf.
  8. Jonsson LJ, Alriksson B, Nilvebrant N-O. 2013. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels 6: 16. https://doi.org/10.1186/1754-6834-6-16
  9. Zhu H, Fang Z, Preston C, Li Y, Hu L. 2014. Transparent paper: fabrications, properties, and device applications. Energy Environ. Sci. 7: 269-287. https://doi.org/10.1039/C3EE43024C
  10. Ding S-Y, Himmel ME. 2006. The maize primary cell wall microfibril: a new model derived from direct visualization. J. Agric. Food Chem. 54: 597-606. https://doi.org/10.1021/jf051851z
  11. Osong SH. 2014. Mechanical pulp based nano-ligno-cellulose production: characterisation and their effect on paper properties. PhD Thesis. Mid Sweden University.
  12. Bharimalla AK, Deshmukh SP, Vigneshwaran N, Patil PG, Prasad V. 2016. Nanocellulose based polymer composites for applications in food packaging: future prospects and challenges. Polym. Plast. Technol. Eng., accepted.
  13. Haoran W, Katia R, Scott R, Peter JV. 2014. Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ. Sci.: Nano, 1: 302. https://doi.org/10.1039/C4EN00059E
  14. Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, et al. 2007. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8: 1934-1941. https://doi.org/10.1021/bm061215p
  15. Nickerson R, Habrle J. 1947. Cellulose intercrystalline structure. Ind. Eng. Chem. 39: 1507-1512. https://doi.org/10.1021/ie50455a024
  16. Ranby BG. 1951. Fibrous macromolecular systems: cellulose and muscle: the colloidal properties of cellulose micelles. Disc. Faraday Soc. 11: 158-164. https://doi.org/10.1039/DF9511100158
  17. Marchessault RH, Morehead FF, Walter NM. 1959. Liquid crystal systems from fibrillar polysaccharides. Nature 184: 632-633. https://doi.org/10.1038/184632a0
  18. Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG, 1992. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int. J. Biolog. Macromol. 14: 170-172. https://doi.org/10.1016/S0141-8130(05)80008-X
  19. Revol J-F, Godbout L, Gray D. 1998. Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. J. Pulp Paper Sci. 24: 146-149.
  20. Favier V, Canova GR, Cavaille JY, Chanzy H, Dufresne A, Gauthier C. 1995. Nanocomposite materials from latex and cellulose whiskers. Polym. Adv. Technol. 6: 351-355. https://doi.org/10.1002/pat.1995.220060514
  21. Osong SH, Norgren S, Engstrand P. 2016. Processing of woodbased microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose 23: 93-123. https://doi.org/10.1007/s10570-015-0798-5
  22. Ankerfors M. 2012. Microfibrillated cellulose: energy-efficient preparation techniques and key properties. PhD Thesis. KTH Royal Institute of Technology.
  23. Lindstrom T, Winter L. 1988. Mikrofibrillar cellulosa som komponent vid papperstillverkning. Internal STFI Report C 159: 1988.
  24. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, et al. 2011. Nanocelluloses: a new family of nature-based materials. Angewandte Chemie International Edition 50: 5438-5466. https://doi.org/10.1002/anie.201001273
  25. Kramer KJ, Masanet E, Xu T, Worrell E. 2009. Energy efficiency improvement and cost saving opportunities for the pulp and paper industry. An energy star guide for energy and plant managers. Berkeley, US: Energy Analysis Department, University of California.
  26. Siro I, Plackett D. 2010. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17: 459-494. https://doi.org/10.1007/s10570-010-9405-y
  27. Lavoine N, Desloges I, Dufresne A, Bras J. 2012. Microfibrillated cellulose: its barrier properties and applications in cellulosic materials: a review. Carbohydr. Polym. 90: 735-764. https://doi.org/10.1016/j.carbpol.2012.05.026
  28. Turbak AF, Snyder FW, Sandberg KR. 1983. Microfibrillated cellulose. Patents.
  29. Turbak AF, Synder FW, Sandberg KR. 1983. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In A. Sarko (ed.) Proceedings of the Ninth Cellulose Conference, Applied Polymer Symposia, 37, New York, N.Y., USA: Wiley. pp. 815-827. ISBN 0-471-88132-5.
  30. Saito T, Isogai A. 2004. TEMPO-mediated oxidation of native cellulose: the effect of oxidation conditions on chemical and crystal structures of the water-Insoluble fractions. Biomacromolecules 5: 1983-1989. https://doi.org/10.1021/bm0497769
  31. Lane J. The strange world of super-strong, super-light nanocellulose. Biofuelsdigest 2014; Available from: http://www.biofuelsdigest.com/bdigest/2014/10/29/the-strange-world-of-super-strongsuper-light-nanocellulose/.
  32. Siqueira G, Bras J, Dufresne A. 2010. Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2: 728. https://doi.org/10.3390/polym2040728
  33. Aulin C, Gallstedt M, Lindstrom T. 2010. Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17: 559-574. https://doi.org/10.1007/s10570-009-9393-y
  34. Charreau H, Foresti ML, Vazquez A. 2013. Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat. Nanotechnol. 7: 56-80. https://doi.org/10.2174/187221013804484854
  35. Kalia S, Boufi S, Celli A, Kango S. 2014. Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym. Sci. 292: 5-31. https://doi.org/10.1007/s00396-013-3112-9
  36. Brodin FW, Gregersen OW, Syverud K. 2014. Cellulose nanofibrils: challenges and possibilities as a paper additive or coating material-a review. Nordic Pulp Pap. Res. J. 29: 156-166. https://doi.org/10.3183/NPPRJ-2014-29-01-p156-166
  37. Karppinen A, Saarinen T, Salmela J, Laukkanen A, Nuopponen M, Seppala J. 2012. Flocculation of microfibrillated cellulose in shear flow. Cellulose 19: 1807-1819. https://doi.org/10.1007/s10570-012-9766-5
  38. Rezayati Charani P, Dehghani-Firouzabadi M, Afra E, Shakeri A. 2013. Rheological characterization of high concentrated MFC gel from kenaf unbleached pulp. Cellulose 20: 727-740. https://doi.org/10.1007/s10570-013-9862-1
  39. Rosenberg M. 2016. Why microfibrillated cellulose is a completely new cellulose product. Available from: http://blog.exilva.com/why-microfibrillated-cellulose-is-a-completely-new-celluloseproduct.
  40. Kalia S, Dufresne A, Cherian BM, Kaith B, Averous L, Njuguna J, et al. 2011. Cellulose-based bio-and nanocomposites: a review. Int. J. Polym. Sci. 2011: 1-35.
  41. Chang C-W, Wang M-J. 2013. Preparation of microfibrillated cellulose composites for sustained release of $H_2O_2$ or $O_2$ for biomedical applications. ACS Sustainable Chem. Eng. 1: 1129-1134. https://doi.org/10.1021/sc400054v
  42. Islam MT, Alam MM, Zoccola M. 2013. Review on modification of nanocellulose for application in composites. Int. J. Innov. Res. Sci. Eng. Technol. 2: 5444-5451.
  43. Taipale T, Osterberg M, Nykanen A, Ruokolainen J, Laine J. 2010. Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17: 1005-1020. https://doi.org/10.1007/s10570-010-9431-9
  44. Henriksson M, Henriksson G, Berglund L, Lindstrom T. 2007. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur. Polym. J. 43: 3434-3441. https://doi.org/10.1016/j.eurpolymj.2007.05.038
  45. Hassan EA, Hassan ML, Oksman K. 2011. Improving bagasse pulp paper sheet properties with microfibrillated cellulose isolated from xylanase-treated bagasse. Wood Fiber Sci. 43: 76-82.
  46. Balea A, Merayo N, De La Fuente E, Negro C, Blanco A. 2017. Assessing the influence of refining, bleaching and TEMPOmediated oxidation on the production of more sustainable cellulose nanofibers and their application as paper additives. Ind. Crops Prod. 97: 374-387. https://doi.org/10.1016/j.indcrop.2016.12.050
  47. Saito T, Isogai A. 2005. A novel method to improve wet strength of paper. Tappi J. 4: 3-8.
  48. Ahola S, Turon X, Osterberg M, Laine J, Rojas O. 2008. Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Langmuir 24: 11592-11599. https://doi.org/10.1021/la801550j
  49. Eriksson M, Pettersson G, Wagberg L. 2005. Application of polymeric multilayers of starch onto wood fibres to enhance strength properties of paper. Nordic Pulp Pap. Res. J. 20: 270-275. https://doi.org/10.3183/NPPRJ-2005-20-03-p270-276
  50. Svending P. 2014. Commercial break-through in MFC processing. in 2014 TAPPI international conference on nanotechnology for renewable materials. Vancouver.
  51. Torvinen K, Kouko J, Passoja S, Keranen J, Hellen E. 2014. Cellulose micro and nanofibrils as a binding material for high filler content papers. Proc., TAPPI Paper Con 2014.
  52. Perez DDS, Tapin-lingua S, Lavalette A, Barbosa T, Gonzalez I, Siqueira G, et al. 2010. Impact of micro/nanofibrillated cellulose preparation on the reinforcement properties of paper and composites films. in TAPPI International Conference on Nanotechnology for Renewable Materials.
  53. Manninen M, Kajanto I, Happonen J, Paltakari J. 2011. The effect of microfibrillated cellulose addition on drying shrinkage and dimensional stability of wood-free paper. Nordic Pulp Pap. Res. J. 26: 297. https://doi.org/10.3183/NPPRJ-2011-26-03-p297-305
  54. Svending P, da Costa ES. 2016. Microfibrillated cellulose proven to create value in full scale papermaking. O Papel: revista mensal de tecnologia em celulose e papel 77: 79-81.
  55. Stephen AM. 1995. Food polysaccharides and their applications. Vol. 67, CRC press.
  56. Turbak AF, Snyder FW, Sandberg KR. 1982. Food products containing microfibrillated cellulose. Patents.
  57. Wustenberg T. 2014. Cellulose and cellulose derivatives in the food industry: fundamentals and applications. John Wiley & Sons.
  58. Strom G, Ohgren C, Ankerfors M. Nanocellulose as an additive for foodstuff. Innventia Report 403 2013; Available from: http://217.114.91.26/Documents/Rapporter/Innventia%20report403.pdf.
  59. Turbak AF, Snyder FW, Sandberg KR. 1983. Suspensions containing microfibrillated cellulose. Patents.
  60. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR. 1983. Microfibrillated cellulose: morphology and accessibility. in J. Appl. Polym. Sci.: Appl. Polym. Symp.;(United States). ITT Rayonier Inc., Shelton, WA.
  61. Boluk Y, Lahiji R, Zhao L, McDermott MT. 2011. Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf. A: Physicochem. Eng. Asp. 377: 297-303. https://doi.org/10.1016/j.colsurfa.2011.01.003
  62. Turbak AF, Snyder FW, Sandberg KR. 1985. Micro-fibrillated cellulose and process for producing it. Patents.
  63. Kumar V, Nazari B, Bousfield D, Toivakka M. 2016. Rheology of mcrofibrillated cellulose suspensions in pressure-driven flow. Ind. Eng. Chem. Res. 55: 3603-3613. https://doi.org/10.1021/acs.iecr.6b00417
  64. Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C, Garnier C, et al. 2010. Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohyd. Polym. 80: 677-686. https://doi.org/10.1016/j.carbpol.2009.11.045
  65. Saarikoski E, Saarinen T, Salmela J, Seppala J. 2012. Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterisation of rheological behaviour. Cellulose 19: 647-659. https://doi.org/10.1007/s10570-012-9661-0
  66. Ono H, Matsui T, Miyamoto I. 2003. Cellulose dispersion. Patents.
  67. Mueller S, Llewellin EW, Mader HM. 2010. The rheology of suspensions of solid particles. Proc. Royal Soc. A: Math. Phys. Eng. Sci. 466: 1201-1228. https://doi.org/10.1098/rspa.2009.0445
  68. Brodin FW, Lund K, Brelid H, Theliander H. 2012. Reinforced absorbent material: a cellulosic composite of TEMPO-oxidized MFC and CTMP fibres. Cellulose 19: 1413-1423. https://doi.org/10.1007/s10570-012-9706-4
  69. Mautner A, Lee K-Y, Tammelin T, Mathew AP, Nedoma AJ, Li K, et al. 2015. Cellulose nanopapers as tight aqueous ultra-filtration membranes. React. Func. Polym. 86: 209-214. https://doi.org/10.1016/j.reactfunctpolym.2014.09.014
  70. Carpenter AW, de Lannoy C-F, Wiesner MR. 2015. Cellulose nanomaterials in water treatment technologies. Environ. Sci. Technol. 49: 5277-5287. https://doi.org/10.1021/es506351r
  71. Chen D, Yang X, He Z, Ni Y. 2016. Potential of cellulose-based materials for lithium-ion batteries (LIB) separator membranes. J. Bioresour. Bioprod. 1: 18-21.
  72. El Baradai O, Beneventi D, Alloin F, Bongiovanni R, Bruas-Reverdy N, Bultel Y, et al. 2016. Microfibrillated cellulose based ink for eco-sustainable screen printed flexible electrodes in lithium ion batteries. J. Mater. Sci. Technol. 32: 566-572. https://doi.org/10.1016/j.jmst.2016.02.010
  73. Zolin L, Destro M, Curtil D, Chaussy D, Penazzi N, Beneventi D, et al. 2014. Flexible cellulose-based electrodes: Towards ecofriendly all-paper batteries. Chem. Eng. Trans. 361-366.
  74. Rebouillat S, Pla F. 2013. State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. J. Biomat. Nanobiotechnol. 4: 165. https://doi.org/10.4236/jbnb.2013.42022
  75. Miller J. Nanocellulose: state of the industry. Tappinano report 2015; Available from: http://www.tappinano.org/media/1114/cellulose-nanomaterials-production-state-of-the-industrydec-2015.pdf.
  76. Rouhianen J, Tsitko I, Vippola M, Koivisto J. 2010. Literature study on risks and risk assessment methods related to nanobased products and the recommended methodology for assessing risk of nano-fibrillar cellulose products. Scale-up Nanoparticles in Modern Papermaking-SUNPAP FP7, Theme 4, NMP-Nanosciences, Nanotechnologies, Materials and New Production Technologies.
  77. Rouhiainen J, Vaananen V, Tsitko I, Kautto J. 2012. Risk assessment of nanofibrillated cellulose in occupational settings. in SUNPAP Final conference.
  78. Pitkanen M, Sneck A, Hentze H, Sievanen J, Hiltunen J, Hellen E, et al. 2010. Nanofibrillar cellulose: assessment of cytotoxic and genotoxic properties in vitro. in 2010 Tappi International conference on nanotechnology for the forest products industry.
  79. McLauchlin AR. 2009. Development of a novel organoclay for poly (lactic acid) nanocomposites. PhD Thesis. Andrew Robert McLauchlin.