• Title/Summary/Keyword: Korea augmentation satellite system (KASS)

Search Result 43, Processing Time 0.024 seconds

KASS Performance Analysis for Operational Test (운용시험을 통한 KASS 성능 분석)

  • Heesung Kim;Minhyuk Son;ByungSeok Lee;Baeckjun Yi
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.167-177
    • /
    • 2024
  • The Korea Augmentation Satellite System (KASS) has been certified by the Ministry of Land, Infrastructure and Transport (MOLIT) and commenced Safety-of-Life (SoL) service at the end of 2023. KASS complies with the APV-I signal-in-space performance requirements defined in the International Civil Aviation Organization (ICAO) Standards and Recommendation Practices (SARPs). The performance of KASS is verified through two steps. In the first step, design conformity from the aspect of performance is verified by both review and analysis of design and simulation. In the second step, operational conformity is tested and assessed by operational testing using real data and a deployed system with operational SWs and configurations. This paper presents a methodology, a procedure and results for the KASS operational testing. Finally, performance degradation events and results by month and region during the operational testing are presented and analyzed.

Activities and Planning for KRS Coordinates Maintenance

  • Kang, Hee Won;Cho, Sunglyong;Kim, Heesung;Yun, Youngsun;Lee, ByungSeok
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.327-332
    • /
    • 2022
  • The Korea Augmentation Satellite System (KASS) is the Satellite-Based Augmentation System (SBAS) under development in Korea. KASS navigation service support navigation Safety of Life (SoL) service. KASS signal provides corrections to Global Positioning System (GPS) data received from KASS Reference Stations (KRS) and is broadcast form Geostationary Earth Orbiting (GEO) satellites to KASS users and is used by GPS/SBAS user equipment to improve the accuracy, availability, continuity and integrity of the navigation solution. Seven KRS's collect the satellite data and send them to the KASS Processing Stations (KPS) for the generation of the corrections and the monitoring the integrity. For performing its computation the KPS needs to know accurate and reliable KRS antennas coordinates. These coordinates are provided as configuration parameters to the KPS. This means that the reference frame in which the KPS work is the one represented by the set of coordinates provided as input. Therefore, the activity to maintain the accuracy of the KRS antenna coordinates is necessary, knowing that coordinates can evolve due to earth plates movements or earthquakes. In this paper, we analyzed the geodetic survey results for KRS antenna coordinates from Site Acceptance Test (SAT) #1 in December 2020 to August 2022. In the future, it is expected that these activities and planning for KRS coordinates maintenance will be produced and provided to KASS system operators for KPS configuration updates during the KASS lifetime of 15 years. Through these maintenance activities, it is expected that monitoring and analysis of unpredictable events such as earthquakes and seism will be possible in the future.

Development of the KASS Multipath Assessment Tool

  • Cho, SungLyong;Lee, ByungSeok;Choi, JongYeoun;Nam, GiWook
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.4
    • /
    • pp.267-275
    • /
    • 2018
  • The reference stations in a satellite-based augmentation system (SBAS) collect raw data from global navigation satellite system (GNSS) to generate correction and integrity information. The multipath signals degrade GNSS raw data quality and have adverse effects on the SBAS performance. The currently operating SBASs (WAAS and EGNOS, etc.) survey existing commercial equipment to perform multipath assessment around the antennas. For the multi-path assessment, signal power of GNSS and multipath at the MEDLL receiver of NovAtel were estimated and the results were replicated by a ratio of signal power estimated at NovAtel Multipath Assessment Tool (MAT). However, the same experiment environment used in existing systems cannot be configured in reference stations in Korean augmentation satellite system (KASS) due to the discontinued model of MAT and MEDLL receivers used in the existing systems. This paper proposes a test environment for multipath assessment around the antennas in KASS Multipath Assessment Tool (K-MAT) for multipath assessment. K-MAT estimates a multipath error contained in the code pseudorange using linear combination between the measurements and replicates the results through polar plot and histogram for multipath assessment using the estimated values.

Geodetic Survey Campaigns and Maintenance Plan for KASS Reference Station Antenna Coordinates

  • Hwanho, Jeong;Hyunjin, Jang;Youngsun, Yun;ByungSeok, Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.83-89
    • /
    • 2023
  • The Korea Augmentation Satellite System (KASS) system is a Satellite Based Augmentation System (SBAS) under development to provide APV-I SBAS service in the Republic of Korea. The KASS ground segment generates correction and integrity information for GPS measurements of KASS users using the accurate positions of KASS Reference Station (KRS) antenna phase centers. For this reason, the accuracy of KRS reference points through geodetic survey campaigns is one of the important factors for providing the KASS service in compliance with the required navigation performance. In order to obtain accurate positions, two geodetic survey campaigns were performed at several reference points, such as Mark, Center of Mast at Ground Level (CMGL), and Center of Hole in Top Plate (CHTP), of each KRS site using three different survey methods, the Virtual Reference Station (VRS), Flächen Korrektur Parameter (FKP), and raw data post-processing methods. By comparing and analyzing the results, the computed coordinates of the reference points were verified and Antenna Phase Center (APC) positions were calculated using KRS Antenna Reference Point (ARP) data, and the first KASS Site Acceptance Test (SAT#1) was performed successfully using the verified APC coordinates. After the first site survey activities, the KASS operators should maintain the coordinates with the required performance such that the overall KASS navigation performance commitment is guaranteed during the lifetime of 15 years. Therefore, the maintenance plan for the KRS antenna coordinates should be developed before the commissioning of KASS operation planned after 2023. Therefore, this paper presents a geodetic survey method selected for the maintenance activities and provides the rationale for using this method.

Development of status monitoring tools for KASS system operation (KASS 시스템 운영을 위한 상태감시 도구 개발)

  • Minhyuk SON;ByungSeok LEE
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.643-648
    • /
    • 2023
  • The Korea Augmentation Satellite System is an SBAS system being developed with the goal of providing SoL (Safety of Life) in accordance with ICAO (International Civil Aviation Organization) standards by December 2023. Monitoring the status of the system is essential for the continuous provision of KASS services, and a status monitoring tool should be developed for this purpose. The development of a status monitoring tool was divided into SYSRT (SYStem Real Time monitoring tool), SMSPP (Subsystem Monitoring Statistics tool for Post Processing) depending on the purpose. Tool development was completed through a series of procedures: requirements definition, design, development, and verification. To verify the status monitoring tool, the KASS system's real data (August 2023) were used to verify it, and the results were statistically analyzed to derive operating time and operating rate. It plans to use these tools to support continuous service provision for SoL service starting after this year.

Configuration and Construction for the KASS KRS Site Infrastructure

  • Jang, HyunJin;Jeong, Hwanho;Son, Minhyuk;Lee, ByungSeok
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.139-144
    • /
    • 2021
  • In this paper, we described configuration and construction of infrastructure for the KASS Reference Station (KRS), subsystem of Korea Augmentation Satellite System (KASS). KASS system consists of three subsystems(KRS, Mission Control Center (MCC), KASS Uplink Station (KUS)). One of these subsystems, KRS receives GNSS data for generating range error and integrity verification and sends to MCC. It is needed to antenna facilities for mounting GNSS antenna and shelter for operating KRS and infra equipment(power and network system, lightning and grounding system, fire extinguish) for operating KRS. For this reason, we have established the requirements for KRS infrastructure and constructed infrastructure for KRS to meet the requirements of KRS infrastructure.

SAT#1 (Preliminary Integration) Test Results of KASS System

  • Jeong, Hwanho;Jang, HyunJin;Kim, Koontack;Lee, Jaeeun;Lee, ByungSeok
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.145-151
    • /
    • 2021
  • According to the Korea Augmentation Satellite System (KASS) system milestone, Site Acceptance Test (SAT) has three steps test until the end of the project. SAT#1 is the first time of SAT steps and verify the KASS Reference Station (KRS) and Sub System (S/S) for the monitoring and controllable. After the equipment and software were installed at the Mission Control Center (MCC) with Central Monitoring and Control Simulator (CMS) for the SAT#1, the 1:1 test was progressed when the KRS and S/S are ready to test. SAT#1 has a 10 steps test case and it was progressed each KRS sites. The test was finished throughout the real-time monitoring and the data collection including the data analysis all of the 7 KRS sites. Finally SAT#1 was completed on December 2020 with successfully.

A Study on the Improvement of Domestic Navigation Safety System: Focused on the Implementation of Korea Augmentation Satellite System (국내 항행안전시스템의 개선에 관한 연구: 한국형 정밀위성항법 보강시스템의 구축을 중심으로)

  • Kim, Yeong-Pil;Hwang, Kyung Tae
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.221-230
    • /
    • 2021
  • The study attempts to suggest potential problem and solutions expected in the process of implementing KASS, which is currently under development to improve the domestic navigation safety system, and to summarize improvement effects of domestic navigation safety system anticipated by the implementation of KASS. Challenges expected in the process of implementing KASS exists in four aspects: emotional, technical, cost, safety aspects. When KASS is implemented and operates, various benefits can be realized. Benefits include cost savings by not using navigation safety systems during takeoff and landing; reduction of flight delays and cancellations by removing airway congestion; increase of aircraft accommodation capacity; reduction of carbon emissions; preparation for future aviation demands and improvement of air transportation safety; and reduction of flight accidents. In conclusion, it is expected to enter into an era of more intense competition due to increased aviation demands. In order to survive in this competitive environment, early introduction of KASS is indispensable. Analysis results of this study are expected to provide reference information for academic research in this area. A possible future research topic include a study predicting the changes in the navigation safety systems introduced by KASS and proposing practical and useful ways to respond the changes.

Development of Ground Monitoring and Control System for Korea Augmentation Satellite System

  • Daehee Won;Chulhee Choi;Eunsung Lee;Hantae Cho;Dongik Jang;Eunok Jang;Heetaek Lim;Ho Sung Lee;Jungja Kim;Joohap Choi
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.185-200
    • /
    • 2023
  • The Korea Augmentation Satellite System (KASS) is the first satellite navigation enhancement system in Korea developed in compliance with international standards. Technologies accumulated during the development process should be spread to industries such as academia and serve as the basis for developing the domestic satellite navigation field. This paper introduces the development process from design to implementation, testing, and verification of KASS control systems (KCS). First, development standards, milestones, requirements, and interface standards are presented as KCS development methods, and major functional design, physical design, and hardware/software implementation are described based on the allocated requirements. Subsequently, the verification environment, procedures, and results of the development product are covered and the developed operational and maintenance procedures are described. In addition, based on the experience gained through the development, suggestions were made for beneficial technology development and organization when promoting satellite navigation projects in the future. Since this work has important historical value for the development of domestic satellite navigation, it is expected that the development results will be shared with academia and industry in the future and be used as basic data for similar development.

Analysis of KASS Flight Test Requirements using The EGNOS (EGNOS 사례를 활용한 KASS 비행시험 요구 사항 분석)

  • Son, Sung-Jin;Hong, Gyo-young;Hong, Woon Ki;Kim, Koon-Tack
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.579-584
    • /
    • 2017
  • SBAS is a satellite based navigation correction system that provides correction information and integrity information of GNSS signal through geostationary satellite based on analysis of GNSS signal in ground station. KASS, a Korean SBAS, is aiming at the APV-1 class SoL service in 2022. Sufficient ground and flight tests must be performed in advance to provide SoL services. However, since KASS, the Korean SBAS, has not yet been added in Korea, specific detailed evaluation items are not presented. EGNOS, which is expected to be the most compatible with KASS and is being serviced after its development, has already been evaluated. In this paper, we analyze the regulations applied to EGNOS construction and analyze the criteria of ground and flight test evaluation items required for flight testing, which is expected to be referenced to the flight inspection process in the future.