• Title/Summary/Keyword: KorQuAD

Search Result 18, Processing Time 0.021 seconds

KorQuAD 2.0: Korean QA Dataset for Web Document Machine Comprehension (KorQuAD 2.0: 웹문서 기계독해를 위한 한국어 질의응답 데이터셋)

  • Kim, Youngmin;Lim, Seungyoung;Lee, Hyunjeong;Park, Soyoon;Kim, Myungji
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.97-102
    • /
    • 2019
  • KorQuAD 2.0은 총 100,000+ 쌍으로 구성된 한국어 질의응답 데이터셋이다. 기존 질의응답 표준 데이터인 KorQuAD 1.0과의 차이점은 크게 세가지가 있는데 첫 번째는 주어지는 지문이 한두 문단이 아닌 위키백과 한 페이지 전체라는 점이다. 두 번째로 지문에 표와 리스트도 포함되어 있기 때문에 HTML tag로 구조화된 문서에 대한 이해가 필요하다. 마지막으로 답변이 단어 혹은 구의 단위뿐 아니라 문단, 표, 리스트 전체를 포괄하는 긴 영역이 될 수 있다. Baseline 모델로 구글이 오픈소스로 공개한 BERT Multilingual을 활용하여 실험한 결과 F1 스코어 46.0%의 성능을 확인하였다. 이는 사람의 F1 점수 85.7%에 비해 매우 낮은 점수로, 본 데이터가 도전적인 과제임을 알 수 있다. 본 데이터의 공개를 통해 평문에 국한되어 있던 질의응답의 대상을 다양한 길이와 형식을 가진 real world task로 확장하고자 한다.

  • PDF

Korean Open Domain Question Answering System Using KorQuAD (KorQuAD를 활용한 한국어 오픈도메인 질의응답 시스템)

  • Cho, Sanghyun;Kim, Minho;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.321-325
    • /
    • 2019
  • 오픈 도메인 질의응답이란, 질문을 줬을 때 그 질문과 연관성이 높은 문서를 검색하고 검색된 문서에서 정답을 추출하는 태스크이다. 본 논문은 기계 독해 데이터인 KorQuAD를 활용한 오픈도메인 질의응답 시스템을 제안한다. 문서 검색기를 이용하여 질문과 관련 있는 위키피디아 문서들을 검색하고 검색된 문서에 단락 선택 모델을 통해서 문서 질문과 연관성이 높은 단락들을 선별하여 기계 독해 모델에서 처리해야 할 입력의 수를 줄였다. 문서 선별모델에서 선별된 여러 단락에서 추출된 정답 후보에서 여러 가지 정답 모형을 적용하여 성능을 비교하는 실험을 하였다. 본 논문에서 제안한 오픈도메인 질의응답 시스템을 KorQuAD에 적용했을 때, 개발 데이터에서 EM 40.42%, F1 55.34%의 성능을 보였다.

  • PDF

Adversarial Examples for Robust Reading Comprehension (강건한 질의응답 모델을 위한 데이터셋 증강 기법)

  • Jang, Hansol;Jun, Changwook;Choi, Jooyoung;Sim, Myoseop;Kim, Hyun;Min, Kyungkoo
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.41-46
    • /
    • 2021
  • 기계 독해는 문단과 질문이 주어질 때에 정답을 맞추는 자연어처리의 연구분야다. 최근 기계 독해 모델이 사람보다 높은 성능을 보여주고 있지만, 문단과 질의가 크게 변하지 않더라도 예상과 다른 결과를 만들어 성능에 영향을 주기도 한다. 본 논문에서는 문단과 질문 두 가지 관점에서 적대적 예시 데이터를 사용하여 보다 강건한 질의응답 모델을 훈련하는 방식을 제안한다. 트랜스포머 인코더 모델을 활용하였으며, 데이터를 생성하기 위해서 KorQuAD 1.0 데이터셋에 적대적 예시를 추가하여 실험을 진행하였다. 적대적 예시를 이용한 데이터로 실험한 결과, 기존 모델보다 1% 가량 높은 성능을 보였다. 또한 질의의 적대적 예시 데이터를 활용하였을 때, 기존 KorQuAD 1.0 데이터에 대한 성능 향상을 확인하였다.

  • PDF

Machine Reading Comprehension-based Question and Answering System for Search and Analysis of Safety Standards (안전기준의 검색과 분석을 위한 기계독해 기반 질의응답 시스템)

  • Kim, Minho;Cho, Sanghyun;Park, Dugkeun;Kwon, Hyuk-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.351-360
    • /
    • 2020
  • If various unreasonable safety standards are preemptively and effectively readjusted, the risk of accidents can be reduced. In this paper, we proposed a machine reading comprehension-based safety standard Q&A system to secure supporting technology for effective search and analysis of safety standards for integrated and systematic management of safety standards. The proposed model finds documents related to safety standard questions in the various laws and regulations, and then divides these documents into provisions. Only those provisions that are likely to contain the answer to the question are selected, and then the BERT-based machine reading comprehension model is used to find answers to questions related to safety standards. When the proposed safety standard Q&A system is applied to KorQuAD dataset, the performance of EM 40.42% and F1 55.34% are shown.

Paragraph Re-Ranking and Paragraph Selection Method for Multi-Paragraph Machine Reading Comprehension (다중 지문 기계독해를 위한 단락 재순위화 및 세부 단락 선별 기법)

  • Cho, Sanghyun;Kim, Minho;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.184-187
    • /
    • 2020
  • 다중 지문 기계독해는 질문과 여러 개의 지문을 입력받고 입력된 지문들에서 추출된 정답 중에 하나의 정답을 출력하는 문제이다. 다중 지문 기계독해에서는 정답이 있을 단락을 선택하는 순위화 방법에 따라서 성능이 크게 달라질 수 있다. 본 논문에서는 단락 안에 정답이 있을 확률을 예측하는 단락 재순위화 모델과 선택된 단락에서 서술형 정답을 위한 세부적인 정답의 경계를 예측하는 세부 단락 선별 기법을 제안한다. 단락 순위화 모델 학습의 경우 모델 학습을 위해 각 단락의 출력에 softmax와 cross-entroy를 이용한 손실 값과 sigmoid와 평균 제곱 오차의 손실 값을 함께 학습하고 키워드 매칭을 함께 적용했을 때 KorQuAD 2.0의 개발셋에서 상위 1개 단락, 3개 단락, 5개 단락에서 각각 82.3%, 94.5%, 97.0%의 재현율을 보였다. 세부 단락 선별 모델의 경우 입력된 두 단락을 비교하는 duoBERT를 이용했을 때 KorQuAD 2.0의 개발셋에서 F1 83.0%의 성능을 보였다.

  • PDF

Evaluating Korean Machine Reading Comprehension Generalization Performance using Cross and Blind Dataset Assessment (기계독해 데이터셋의 교차 평가 및 블라인드 평가를 통한 한국어 기계독해의 일반화 성능 평가)

  • Lim, Joon-Ho;Kim, Hyunki
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.213-218
    • /
    • 2019
  • 기계독해는 자연어로 표현된 질문과 단락이 주어졌을 때, 해당 단락 내에 표현된 정답을 찾는 태스크이다. 최근 기계독해 태스크도 다른 자연어처리 태스크와 유사하게 BERT, XLNet, RoBERTa와 같이 사전에 학습한 언어모델을 이용하고 질문과 단락이 입력되었을 경우 정답의 경계를 추가 학습(fine-tuning)하는 방법이 우수한 성능을 보이고 있으며, 특히 KorQuAD v1.0 데이터셋에서 학습 및 평가하였을 경우 94% F1 이상의 높은 성능을 보이고 있다. 본 논문에서는 현재 최고 수준의 기계독해 기술이 학습셋과 유사한 평가셋이 아닌 일반적인 질문과 단락 쌍에 대해서 가지는 일반화 능력을 평가하고자 한다. 이를 위하여 첫번째로 한국어에 대해서 공개된 KorQuAD v1.0 데이터셋과 NIA v2017 데이터셋, 그리고 엑소브레인 과제에서 구축한 엑소브레인 v2018 데이터셋을 이용하여 데이터셋 간의 교차 평가를 수행하였다. 교차 평가결과, 각 데이터셋의 정답의 길이, 질문과 단락 사이의 오버랩 비율과 같은 데이터셋 통계와 일반화 성능이 서로 관련이 있음을 확인하였다. 다음으로 KorBERT 사전 학습 언어모델과 학습 가능한 기계독해 데이터 셋 21만 건 전체를 이용하여 학습한 기계독해 모델에 대해 블라인드 평가셋 평가를 수행하였다. 블라인드 평가로 일반분야에서 학습한 기계독해 모델의 법률분야 평가셋에서의 일반화 성능을 평가하고, 정답 단락을 읽고 질문을 생성하지 않고 질문을 먼저 생성한 후 정답 단락을 검색한 평가셋에서의 기계독해 성능을 평가하였다. 블라인드 평가 결과, 사전 학습 언어 모델을 사용하지 않은 기계독해 모델 대비 사전 학습 언어 모델을 사용하는 모델이 큰 폭의 일반화 성능을 보였으나, 정답의 길이가 길고 질문과 단락 사이 어휘 오버랩 비율이 낮은 평가셋에서는 아직 80%이하의 성능을 보임을 확인하였다. 본 논문의 실험 결과 기계 독해 태스크는 특성 상 질문과 정답 사이의 어휘 오버랩 및 정답의 길이에 따라 난이도 및 일반화 성능 차이가 발생함을 확인하였고, 일반적인 질문과 단락을 대상으로 하는 기계독해 모델 개발을 위해서는 다양한 유형의 평가셋에서 일반화 평가가 필요함을 확인하였다.

  • PDF

Test Dataset for validating the meaning of Table Machine Reading Language Model (표 기계독해 언어 모형의 의미 검증을 위한 테스트 데이터셋)

  • YU, Jae-Min;Cho, Sanghyun;Kwon, Hyuk-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.164-167
    • /
    • 2022
  • In table Machine comprehension, the knowledge required for language models or the structural form of tables changes depending on the domain, showing a greater performance degradation compared to text data. In this paper, we propose a pre-learning data construction method and an adversarial learning method through meaningful tabular data selection for constructing a pre-learning table language model robust to these domain changes in table machine reading. In order to detect tabular data sed for decoration of web documents without structural information from the extracted table data, a rule through heuristic was defined to identify head data and select table data was applied. An adversarial learning method between tabular data and infobax data with knowledge information about entities was applied. When the data was refined compared to when it was trained with the existing unrefined data, F1 3.45 and EM 4.14 increased in the KorQuAD table data, and F1 19.38, EM 4.22 compared to when the data was not refined in the Spec table QA data showed increased performance.

  • PDF

Machine Reading Comprehension-based Q&A System in Educational Environment (교육환경에서의 기계독해 기반 질의응답 시스템)

  • Jun-Ha Ju;Sang-Hyun Park;Seung-Wan Nam;Kyung-Tae Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.541-544
    • /
    • 2022
  • 코로나19 이후로 교육의 형태가 오프라인에서 온라인으로 변화되었다. 하지만 온라인 강의 교육 서비스는 실시간 소통의 한계를 가지고 있다. 이러한 단점을 해결하기 위해 본 논문에서는 기계독해 기반 실시간 강의 질의응답 시스템을 제안한다. 본 논문연구에서는 질의응답 시스템을 만들기 위해 KorQuAD 1.0 학습 데이터를 활용해 BERT를 fine-tuning 했고 그 결과를 이용해 기계독해 기반 질의응답 시스템을 구축했다. 하지만 이렇게 구축된 챗봇은 강의 내용에 대한 질의응답에 최적화되어있지 않기 때문에 강의 내용 질의응답에 관한 문장형 데이터 셋을 구축하고 추가 학습을 수행하여 문제를 해결했다. 실험 결과 질의응답 표를 통해 문장형 답변에 대한 성능이 개선된 것을 확인할 수 있다.

  • PDF

Korean Baseball League Q&A System Using BERT MRC (BERT MRC를 활용한 한국 프로야구 Q&A 시스템)

  • Seo, JungWoo;Kim, Changmin;Kim, HyoJin;Lee, Hyunah
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.459-461
    • /
    • 2020
  • 매일 게시되는 다양한 프로야구 관련 기사에는 경기 결과, 각종 기록, 선수의 부상 등 다양한 정보가 뒤섞여있어, 사용자가 원하는 정보를 찾아내는 과정이 매우 번거롭다. 본 논문에서는 문서 검색과 기계 독해를 이용하여 야구 분야에 대한 Q&A 시스템을 제안한다. 기사를 형태소 분석하고 BM25 알고리즘으로 얻은 문서 가중치로 사용자 질의에 적합한 기사들을 선정하고 KorQuAD 1.0과 직접 구축한 프로야구 질의응답 데이터셋을 이용해 학습시킨 BERT 모델 기반 기계 독해로 답변 추출을 진행한다. 야구 특화 데이터 셋을 추가하여 학습시켰을 때 F1 score, EM 모두 15% 내외의 정확도 향상을 보였다.

  • PDF

Passage Re-ranking Model using N-gram attention between Question and Passage (질문-단락 간 N-gram 주의 집중을 이용한 단락 재순위화 모델)

  • Jang, Youngjin;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.554-558
    • /
    • 2020
  • 최근 사전학습 모델의 발달로 기계독해 시스템 성능이 크게 향상되었다. 하지만 기계독해 시스템은 주어진 단락에서 질문에 대한 정답을 찾기 때문에 단락을 직접 검색해야하는 실제 환경에서의 성능 하락은 불가피하다. 즉, 기계독해 시스템이 오픈 도메인 환경에서 높은 성능을 보이기 위해서는 높은 성능의 검색 모델이 필수적이다. 따라서 본 논문에서는 검색 모델의 성능을 보완해 줄 수 있는 오픈 도메인 기계독해를 위한 단락 재순위화 모델을 제안한다. 제안 모델은 합성곱 신경망을 이용하여 질문과 단락을 구절 단위로 표현했으며, N-gram 구절 사이의 상호 주의 집중을 통해 질문과 단락 사이의 관계를 효과적으로 표현했다. KorQuAD를 기반으로한 실험에서 제안모델은 MRR@10 기준 93.0%, Top@1 Precision 기준 89.4%의 높은 성능을 보였다.

  • PDF