Test Dataset for validating the meaning of Table Machine Reading Language Model

표 기계독해 언어 모형의 의미 검증을 위한 테스트 데이터셋

  • Published : 2022.10.03

Abstract

In table Machine comprehension, the knowledge required for language models or the structural form of tables changes depending on the domain, showing a greater performance degradation compared to text data. In this paper, we propose a pre-learning data construction method and an adversarial learning method through meaningful tabular data selection for constructing a pre-learning table language model robust to these domain changes in table machine reading. In order to detect tabular data sed for decoration of web documents without structural information from the extracted table data, a rule through heuristic was defined to identify head data and select table data was applied. An adversarial learning method between tabular data and infobax data with knowledge information about entities was applied. When the data was refined compared to when it was trained with the existing unrefined data, F1 3.45 and EM 4.14 increased in the KorQuAD table data, and F1 19.38, EM 4.22 compared to when the data was not refined in the Spec table QA data showed increased performance.

표 기계독해에서는 도메인에 따라 언어모형에 필요한 지식이나 표의 구조적인 형태가 변화하면서 텍스트 데이터에 비해서 더 큰 성능 하락을 보인다. 본 논문에서는 표 기계독해에서 이러한 도메인의 변화에 강건한 사전학습 표 언어 모형 구축을 위한 의미있는 표 데이터 선별을 통한 사전학습 데이터 구축 방법과 적대적인 학습 방법을 제안한다. 추출한 표 데이터에서 구조적인 정보가 없이 웹 문서의 장식을 위해 사용되는 표 데이터 검출을 위해 Heuristic을 통한 규칙을 정의하여 HEAD 데이터를 식별하고 표 데이터를 선별하는 방법을 적용했으며, 구조적인 정보를 가지는 일반적인 표 데이터와 엔티티에 대한 지식 정보를 가지는 인포박스 데이터간의 적대적 학습 방법을 적용했다. 기존의 정제되지 않는 데이터로 학습했을 때와 비교하여 데이터를 정제하였을 때, KorQuAD 표 데이터에서 F1 3.45, EM 4.14가 증가하였으며, Spec 표 질의응답 데이터에서 정제하지 않았을 때와 비교하여 F1 19.38, EM 4.22가 증가한 성능을 보였다.

Keywords